I study a regression model in which one covariate is an unknown function of a latent driver of link formation in a network. Rather than specify or fit a parametric network formation model, I introduce a new method based on matching pairs of agents with similar columns of the squared adjacency matrix, the ijth entry of which contains the number of other agents linked to both agents i and j. The intuition behind this approach is that for a large class of network formation models the columns of this matrix characterize all of the identifiable information about individual linking behavior. In the paper, I first describe the model and formalize this intuition. I then introduce estimators for the parameters of the regression model and characterize their large sample properties.
We propose a new unified framework for causal inference when outcomes depend on how agents are linked in a social or economic network. Such network interference describes a large literature on treatment spillovers, social interactions, social learning, information diffusion, social capital formation, and more. Our approach works by first characterizing how an agent is linked in the network using the configuration of other agents and connections nearby as measured by path distance. The impact of a policy or treatment assignment is then learned by pooling outcome data across similarly configured agents. In the paper, we propose a new nonparametric modeling approach and consider two applications to causal inference. The first application is to testing policy irrelevance/no treatment effects. The second application is to estimating policy effects/treatment response. We conclude by evaluating the finite-sample properties of our estimation and inference procedures via simulation.
How can one determine whether a community-level treatment, such as the introduction of a social program or trade shock, alters agents' incentives to form links in a network? This paper proposes analogues of a two-sample Kolmogorov-Smirnov test, widely used in the literature to test the null hypothesis of "no treatment effects," for network data. It first specifies a testing problem in which the null hypothesis is that two networks are drawn from the same random graph model. It then describes two randomization tests based on the magnitude of the difference between the networks' adjacency matrices as measured by the 2 → 2 and ∞ → 1 operator norms. Power properties of the tests are examined analytically, in simulation, and through two real-world applications. A key finding is that the test based on the ∞ → 1 norm can be substantially more powerful than that based on the 2 → 2 norm for the kinds of sparse and degree-heterogeneous networks common in economics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.