Although frontostriatal circuits are critical for the temporal control of action, how time is encoded in frontostriatal circuits is unknown. We recorded from frontal and striatal neurons while rats engaged in interval timing, an elementary cognitive function that engages both areas. We report four main results. First, "ramping" activity, a monotonic change in neuronal firing rate across time, is observed throughout frontostriatal ensembles. Second, frontostriatal activity scales across multiple intervals. Third, striatal ramping neurons are correlated with activity of the medial frontal cortex. Finally, interval timing and striatal ramping activity are disrupted when the medial frontal cortex is inactivated. Our results support the view that striatal neurons integrate medial frontal activity and are consistent with drift-diffusion models of interval timing. This principle elucidates temporal processing in frontostriatal circuits and provides insight into how the medial frontal cortex exerts top-down control of cognitive processing in the striatum. The ability to guide actions in time is essential to mammalian behavior from rodents to humans. The prefrontal cortex and striatum are critically involved in temporal processing and share extensive neuronal connections, yet it remains unclear how these structures represent time. We studied these two brain areas in rodents performing interval-timing tasks and found that time-dependent "ramping" activity, a monotonic increase or decrease in neuronal activity, was a key temporal signal. Furthermore, we found that striatal ramping activity was correlated with and dependent upon medial frontal activity. These results provide insight into information-processing principles in frontostriatal circuits.
The subthalamic nucleus is a key site controlling motor function in humans. Deep brain stimulation of the subthalamic nucleus can improve movements in patients with Parkinson's disease; however, for unclear reasons, it can also have cognitive effects. Here, we show that the human subthalamic nucleus is monosynaptically connected with cognitive brain areas such as the prefrontal cortex. Single neurons and field potentials in the subthalamic nucleus are modulated during cognitive processing and are coherent with 4-Hz oscillations in medial prefrontal cortex. These data predict that low-frequency deep brain stimulation may alleviate cognitive deficits in Parkinson's disease patients. In line with this idea, we found that novel 4-Hz deep brain stimulation of the subthalamic nucleus improved cognitive performance. These data support a role for the human hyperdirect pathway in cognitive control, which could have relevance for brain-stimulation therapies aimed at cognitive symptoms of human brain disease.awx300media15660002226001.
The bed nuclei of the stria terminalis (BST) are critically important for integrating stress-related signals between the limbic forebrain and hypothalamo-pituitary-adrenal (HPA) effector neurons in the paraventricular hypothalamus (PVH). Nevertheless, the circuitry underlying BST control over the stress axis and its role in depression-related behaviors has remained obscure. Utilizing optogenetic approaches in rats, we have identified a novel role for the anteroventral subdivision of BST in the coordinated inhibition of both HPA output and passive coping behaviors during acute inescapable (tail suspension, TS) stress. Follow-up experiments probed axonal pathways emanating from the anteroventral BST which accounted for separable endocrine and behavioral functions subserved by this cell group. The PVH and ventrolateral periaqueductal gray were recipients of GABAergic outputs from the anteroventral BST that were necessary to restrain stress-induced HPA activation and passive coping behavior, respectively, during TS and forced swim tests. In contrast to other BST subdivisions implicated in anxiety-like responses, these results direct attention to the anteroventral BST as a nodal point in a stressmodulatory network for coordinating neuroendocrine and behavioral coping responses, wherein impairment could account for core features of stress-related mood disorders.
The basolateral amygdala (BLA) modulates memory consolidation for a variety of types of learning, whereas other brain regions play more selective roles in specific kinds of learning suggesting a role for differential consolidation via distinct BLA pathways. The ventral hippocampus (VH), an efferent target of the BLA, has been suggested to selectively process emotionrelated learning, yet whether the BLA VH pathway modulates memory consolidation, and does so in a learning-specific manner, is unknown. To address this issue, the BLA of male Sprague-Dawley rats was bilaterally transduced to express either ChR2(E123A) or eArchT3.0. Fiber optic probes were implanted in the VH to provide illumination of BLA axons. Rats then underwent a modified contextual fear conditioning task permitting separation of context and footshock learning. On day 1, rats received 3 min of pre-exposure to the apparatus. On day 2, rats were placed into the apparatus, received an immediate footshock, and quickly removed. Retention was tested on day 4. Optical stimulation of the BLA VH pathway following footshock, but not context, training using trains of 40-Hz light pulses enhanced retention. Continuous optical inhibition of this pathway for 15 min starting 25 min after footshock training impaired retention. These findings indicate that BLA VH projections influence the consolidation for footshock, but not context, learning of a modified CFC task and provide direct evidence that BLA projections to other brain regions modulate memory consolidation selectively depending on the kind of learning involved.Learning and memory involves complex interactions among multiple brain regions that play discrete roles in the consolidation of specific kinds of memories. However, work strongly indicates that the basolateral amygdala (BLA) modulates the consolidation of a wide array of memories. It has been hypothesized that the BLA plays this more general role, at least in part, through interactions with distinct regions (McGaugh 2002(McGaugh , 2004McIntyre et al. 2012). BLA connections with forebrain regions such as the hippocampus and striatum that are selectively involved in the consolidation of certain kinds of memories (McDonald 1991;Pitkänen et al. 2000;McGaugh 2002;Malin and McGaugh 2006;Paz et al. 2006;Chavez et al. 2013) suggest that efferent pathways from the BLA may be selectively involved in modulating consolidation for specific kinds of information.Indeed, much evidence suggests that the BLA interacts with the hippocampus during memory consolidation (Packard et al. 1994;Roozendaal et al. 1999;Malin and McGaugh 2006) and that the BLA directly or indirectly influences activity and plasticity in different parts of the hippocampal formation (Ikegaya et al. 1995;Frey et al. 2001;McIntyre et al. 2005;McReynolds et al. 2014;Lovitz and Thompson 2015). These findings suggest pathway mechanisms by which the BLA influences the consolidation of memories regulated by the hippocampal formation. However, the hippocampus comprises different subregions, including dors...
One of the challenges facing neuroscience entails localization of circuits and mechanisms accounting for how multiple features of stressresponses are organized to promote survival during adverse experiences. The rodent medial prefrontal cortex (mPFC) is generally regarded as a key site for cognitive and affective information processing, and the anteroventral bed nuclei of the stria terminalis (avBST) integrates homeostatic information from a variety of sources, including the mPFC. Thus, we proposed that the mPFC is capable of generating multiple features (endocrine, behavioral) of adaptive responses via its influence over the avBST. To address this possibility, we first optogenetically inhibited input to avBST from the rostral prelimbic cortical region of mPFC and observed concurrent increases in immobility and hypothalamo-pituitary-adrenal (HPA) output in male rats during tail suspension, whereas photostimulation of this pathway decreased immobility during the same challenge. Anatomical tracing experiments confirmed projections from the rostral prelimbic subfield to separate populations of avBST neurons, and from these to HPA effector neurons in the paraventricular hypothalamic nucleus, and to aspects of the midbrain periaqueductal gray that coordinate passive defensive behaviors. Finally, stimulation and inhibition of the prelimbic-avBST pathway, respectively, decreased and increased passive coping in the shock-probe defensive burying test, without having any direct effect on active coping (burying) behavior. These results define a new neural substrate in the coordination of a response set that involves the gating of passive, rather than active, coping behaviors while restraining neuroendocrine activation to optimize adaptation during threat exposure.The circuits and mechanisms accounting for how multiple features of responses are organized to promote adaptation have yet to be elucidated. Our report identifies a prefrontal-bed nucleus pathway that organizes a response set capable of gating passive coping behaviors while concurrently restraining neuroendocrine activation during exposure to inescapable stressors. These data provide insight into the central organization of how multiple features of responses are integrated to promote adaptation during adverse experiences, and how disruption in one neural pathway may underlie a broad array of maladaptive responses in stressrelated psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.