Although frontostriatal circuits are critical for the temporal control of action, how time is encoded in frontostriatal circuits is unknown. We recorded from frontal and striatal neurons while rats engaged in interval timing, an elementary cognitive function that engages both areas. We report four main results. First, "ramping" activity, a monotonic change in neuronal firing rate across time, is observed throughout frontostriatal ensembles. Second, frontostriatal activity scales across multiple intervals. Third, striatal ramping neurons are correlated with activity of the medial frontal cortex. Finally, interval timing and striatal ramping activity are disrupted when the medial frontal cortex is inactivated. Our results support the view that striatal neurons integrate medial frontal activity and are consistent with drift-diffusion models of interval timing. This principle elucidates temporal processing in frontostriatal circuits and provides insight into how the medial frontal cortex exerts top-down control of cognitive processing in the striatum. The ability to guide actions in time is essential to mammalian behavior from rodents to humans. The prefrontal cortex and striatum are critically involved in temporal processing and share extensive neuronal connections, yet it remains unclear how these structures represent time. We studied these two brain areas in rodents performing interval-timing tasks and found that time-dependent "ramping" activity, a monotonic increase or decrease in neuronal activity, was a key temporal signal. Furthermore, we found that striatal ramping activity was correlated with and dependent upon medial frontal activity. These results provide insight into information-processing principles in frontostriatal circuits.
Rats trained on a dual-duration, dual-modality peak interval procedure (e.g., tone = 10 seconds / light = 20 seconds) often show unimodal response distributions with peaks that fall in between the anchor durations when both cues are presented as a simultaneous compound. Two hypotheses can explain this finding. According to the averaging hypothesis, rats integrate the anchor durations into an average during compound trials, with each duration being weighted by its respective reinforcement probability. According to the simultaneous temporal processing hypothesis, rats time both durations veridically and simultaneously during compound trials, and respond continuously across both durations, thereby producing a unimodal response distribution with a peak falling in between the anchor durations. In the present compounding experiment, rats were trained to associate a tone and light with two different durations (e.g., 5 and 20 seconds, respectively). However, in contrast to previous experiments, each cue was also associated with a distinct response requirement (e.g., left nosepoke for tone / right nosepoke for light). On the majority of compound trials, responding on a given nosepoke fell close to its respective duration, but was shifted in the direction of the other cue’s duration, suggesting rats timed an average of the two durations. However, more weight appeared to be given to the duration associated with the manipulandum on which the rat responded, rather than the duration associated with a higher reinforcement probability as predicted by the averaging hypothesis. Group differences were also observed, with rats trained to associate the tone and light with the short and long durations, respectively, being more likely to show these shifts than the counterbalanced modality-duration group (i.e., light-short / tone-long). This parallels group differences observed in past studies, and suggest that cue-weighting in response to stimulus compounds is influenced by the modality-duration relationship of the anchor cues. The current results suggest that temporal averaging is a more flexible process than previously theorized and provide novel insight in the mechanisms that affect cue-weighting.
These results suggest the utility of an SSFO-based approach for enhancing activity in a structure without driving specific patterns of neuronal firing. However, the utility of an SSFO-based approach for axon terminal stimulation remains unclear. Moreover, these results suggest that the ability of the IL to reduce cocaine seeking depends, at least in part, on rats first having undergone extinction training.
Striatal dopamine strongly regulates how individuals use time to guide behavior. Dopamine acts on D1-and D2-dopamine receptors in the striatum. However, the relative role of these receptors in the temporal control of behavior is unclear. To assess this, we trained rats on a task in which they decided to start and stop a series of responses based on the passage of time and evaluated how blocking D1 or D2-dopamine receptors in the dorsomedial or dorsolateral striatum impacted performance. D2 blockade delayed the decision to start and stop responding in both regions, and this effect was larger in the dorsomedial striatum. By contrast, dorsomedial D1 blockade delayed stop times, without significantly delaying start times, whereas dorsolateral D1 blockade produced no detectable effects. These findings suggest that striatal dopamine may tune decision thresholds during timing tasks. Furthermore, our data indicate that the dorsomedial striatum plays a key role in temporal control, which may be useful for localizing neural circuits that mediate the temporal control of action.
Individuals must predict future events to proactively guide their behavior. Predicting when events will occur is a critical component of these expectations. Temporal expectations are often generated based on individual cue-duration relationships. However, the durations associated with different environmental cues will often co-vary due to a common cause. We show that timing behavior may be calibrated based on this expected covariance, which we refer to as the ‘common cause hypothesis’. In five experiments using rats, we found that when the duration associated with one temporal cue changes, timed-responding to other cues shift in the same direction. Furthermore, training subjects that expecting covariance is not appropriate in a given situation blocks this effect. Finally, we confirmed that this transfer is context-dependent. These results reveal a novel principle that modulates timing behavior, which we predict will apply across a variety of magnitude-expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.