Campylobacter jejuni is the leading cause of bacterial gastro-enteritis in the developed world. It is thought to infect 2–3 million people a year in the US alone, at a cost to the economy in excess of US $4 billion. C. jejuni is a widespread zoonotic pathogen that is carried by animals farmed for meat and poultry. A connection with contaminated food is recognized, but C. jejuni is also commonly found in wild animals and water sources. Phylogenetic studies have suggested that genotypes pathogenic to humans bear greatest resemblance to non-livestock isolates. Moreover, seasonal variation in campylobacteriosis bears the hallmarks of water-borne disease, and certain outbreaks have been attributed to contamination of drinking water. As a result, the relative importance of these reservoirs to human disease is controversial. We use multilocus sequence typing to genotype 1,231 cases of C. jejuni isolated from patients in Lancashire, England. By modeling the DNA sequence evolution and zoonotic transmission of C. jejuni between host species and the environment, we assign human cases probabilistically to source populations. Our novel population genetics approach reveals that the vast majority (97%) of sporadic disease can be attributed to animals farmed for meat and poultry. Chicken and cattle are the principal sources of C. jejuni pathogenic to humans, whereas wild animal and environmental sources are responsible for just 3% of disease. Our results imply that the primary transmission route is through the food chain, and suggest that incidence could be dramatically reduced by enhanced on-farm biosecurity or preventing food-borne transmission.
The glucocorticoid receptor (GR) associates with glucocorticoid response elements (GREs) and regulates selective gene transcription in a cell-specific manner. Native GREs are typically thought to be composite elements that recruit GR as well as other regulatory factors into functional complexes. We assessed whether GR occupancy is commonly a limiting determinant of GRE function as well as the extent to which core GR binding sequences and GRE architecture are conserved at functional loci. We surveyed 100-kb regions surrounding each of 548 known or potentially glucocorticoid-responsive genes in A549 human lung cells for GR-occupied GREs. We found that GR was bound in A549 cells predominately near genes responsive to glucocorticoids in those cells and not at genes regulated by GR in other cells. The GREs were positionally conserved at each responsive gene but across the set of responsive genes were distributed equally upstream and downstream of the transcription start sites, with 63% of them >10 kb from those sites. Strikingly, although the core GR binding sequences across the set of GREs varied extensively around a consensus, the precise sequence at an individual GRE was conserved across four mammalian species. Similarly, sequences flanking the core GR binding sites also varied among GREs but were conserved at individual GREs. We conclude that GR occupancy is a primary determinant of glucocorticoid responsiveness in A549 cells and that core GR binding sequences as well as GRE architecture likely harbor gene-specific regulatory information.
The androgen receptor (AR) mediates the physiologic and pathophysiologic effects of androgens including sexual differentiation, prostate development, and cancer progression by binding to genomic androgen response elements (AREs), which influence transcription of AR target genes. The composition and context of AREs differ between genes, thus enabling AR to confer multiple regulatory functions within a single nucleus. We used expression profiling of an immortalized human prostate epithelial cell line to identify 205 androgen-responsive genes (ARGs), most of them novel. In addition, we performed chromatin immunoprecipitation to identify 524 AR binding regions and validated in reporter assays the ARE activities of several such regions. Interestingly, 67% of our AREs resided within ∼50 kb of the transcription start sites of 84% of our ARGs. Indeed, most ARGs were associated with two or more AREs, and ARGs were sometimes themselves linked in gene clusters containing up to 13 AREs and 12 ARGs. AREs appeared typically to be composite elements, containing AR binding sequences adjacent to binding motifs for other transcriptional regulators. Functionally, ARGs were commonly involved in prostate cell proliferation, communication, differentiation, and possibly cancer progression. Our results provide new insights into cell-and gene-specific mechanisms of transcriptional regulation of androgen-responsive gene networks.[Keywords: Androgen receptor (AR); androgen response element (ARE); transcription; steroid receptor; chromatin immunoprecipitation (ChIP); prostate cancer] Supplemental material is available at http://www.genesdev.org.
Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue.
Recent progress in determining the population structure of Campylobacter jejuni, and discerning associations between genotypes and specific niches, has emphasized the shortfall in our understanding of the ecology and epidemiology of this bacterium. We examined the natural structure of the C. jejuni community associated with cattle farmland in the UK by structured spatiotemporal sampling of habitats, including livestock and wild animal faeces, environmental water and soil, over a 10-week period within a 100 km2 area. A total of 172 isolates were characterized using multilocus sequence typing into 65 sequence types (STs). Isolates from cattle faeces were significantly over-represented in the ST-61 complex, whereas isolates from wildlife faeces and water were more likely to belong to the ST-45 complex and a number of unusual STs, many of which were first encountered during this study. Sampling within a narrow spatiotemporal window permitted the application of novel statistical methods exploring the relationship between the genetic relatedness and spatial separation of isolates. This approach showed that isolates from the same sampling squares and squares separated by <1.0 km were genetically more similar than isolates separated by greater distances. Our study demonstrates the potential of multilocus sequence typing combined with spatial modelling in exploring natural transmission pathways for C. jejuni.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.