BACKGROUND Gamma-aminobutyric acid (GABA), the brain’s principal inhibitory neurotransmitter, has been associated with perceptual and attentional functioning. Recent application of magnetic resonance spectroscopy (MRS) provides in vivo evidence for decreasing GABA concentrations during adulthood. It is unclear, however, how age-related decrements in cerebral GABA concentrations contribute to cognitive decline, or whether previously reported declines in cerebral GABA concentrations persist during healthy aging. We hypothesized that participants with higher GABA concentrations in the frontal cortex would exhibit superior cognitive function and that previously reported age-related decreases in cortical GABA concentrations continue into old age. METHODS We measured GABA concentrations in frontal and posterior midline cerebral regions using a Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) 1H-MRS approach in 94 older adults without history or clinical evidence of mild cognitive impairment or dementia (mean age, 73 years). We administered the Montreal Cognitive Assessment to assess cognitive functioning. RESULTS Greater frontal GABA concentrations were associated with superior cognitive performance. This relation remained significant after controlling for age, years of education, and brain atrophy. GABA concentrations in both frontal and posterior regions decreased as a function of age. CONCLUSIONS These novel findings from a large, healthy, older population indicate that cognitive function is sensitive to cerebral GABA concentrations in the frontal cortex, and GABA concentration in frontal and posterior regions continue to decline in later age. These effects suggest that proton MRS may provide a clinically useful method for the assessment of normal and abnormal age-related cognitive changes and the associated physiological contributors.
Accurate and reliable quantification of brain metabolites measured in vivo using 1 H magnetic resonance spectroscopy (MRS) is a topic of continued interest in the field. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, we analyze spectrally edited -aminobutyric acid (GABA) MRS data and quantify GABA levels relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using standard GABA+ editing. Unsuppressed water acquisitions from the same volume of interest were acquired for signal referencing. Whole-brain T1-weighted structural images were acquired and tissue-segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA+ measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17%, which was largely driven by vendor-related differences according to a linear mixed-effects analysis. The mean within-site coefficient of variation was 9%. Vendor differences contributed 53% to the total variance in the data, while the remaining variance was attributed to site-(11%) and participant-level (36%) effects. Results from an exploratory analysis suggested that the vendor differences were related to the water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA+ measurements exhibit levels of variance similar to creatine-referenced GABA+ measurements. It is concluded that quantification using internal tissue water referencing remains a viable and reliable method for the in vivo quantification of GABA+ levels.
Introduction: Walking in the home and community often involves performance of complex walking tasks. Understanding the control of such tasks is crucial to preserving independence and quality of life in older adults. However, very little research has been conducted in this area. Here, we assess the extent to which two measures of central nervous system (CNS) activity are responsive to the challenges posed by preparation and performance of complex walking tasks. Prefrontal cortical activity was measured by functional near-infrared spectroscopy (fNIRS) and sympathetic nervous system arousal was measured by skin conductance level (SCL).Materials and methods: Sixteen older men and women (age: 77.2 ± 5.6 years) with mild mobility deficits participated in this study. Participants walked at their preferred speed without distractions along an unobstructed, well-lit course (control task) and also walked on the same course under five separate challenging conditions: performing a cognitive verbal fluency task (verbal task), dim lighting (dim task), carrying a tray (carry task), negotiating obstacles (obstacles task) and wearing a weighted vest (vest task). Mean prefrontal activation and SCL were calculated during the preparation and performance phases of each task. Gait spatiotemporal measurements were acquired by an instrumented gait mat.Results: Prefrontal cortical activity and SCL were elevated during the preparation phase of complex walking tasks relative to the control task. During the performance phase, prefrontal activity remained elevated to a similar level as during task preparation. In contrast, SCL continued to increase beyond the level observed during task preparation. A larger increase in prefrontal activity was found to be linked to preserved quality of gait during complex walking tasks.Discussion: These findings indicate that availability and utilization of CNS resources are important for optimizing performance of complex walking tasks in older adults.
Wearable alcohol biosensors have emerged as a valuable tool for noninvasive, objective and continuous monitoring of alcohol consumption. However, to date their research and clinical applications have been limited by several factors including large size, high cost, and social stigma. In contrast, recently developed wrist-worn alcohol biosensors are smaller, less expensive, and may be more acceptable for daily use. However, these devices are at the prototype phase and have just begun to be tested for research applications. In this paper, we describe our experiences with two prototypes of these new wrist-worn alcohol biosensors (i.e., Quantac Tally and BACtrack Skyn) and their associated smartphone applications in both a controlled laboratory setting and the real-world environment. Our preliminary experiences with these devices highlight their advantages including comfort, high participant acceptability, and good compliance. However, there are various limitations that should be addressed prior to future research applications of these biosensors, including large interpersonal variations in transdermal alcohol readings, lack of immediately applicable data analysis/interpretation software, and poor battery life after a few months. More research is also needed to further validate the new biosensors, and investigate individual (e.g., skin thickness, gender differences) and environmental factors (e.g., humidity, temperature) contributing to the variations in transdermal alcohol readings measured by wrist-worn alcohol biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.