Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.
We have obtained milliarcsecond-scale spectral index distributions for a sample of 190 extragalactic radio jets through the Monitoring of Jets in Active Galactic Nuclei with the VLBA Experiments (MOJAVE) project. The sources were observed in 2006 at 8.1, 8.4, 12.1, and 15.4 GHz, and we have determined spectral index maps between 8.1 and 15.4 GHz to study the four-frequency spectrum in individual jet features. We have performed detailed simulations to study the effects of image alignment and (u,v)-plane coverage on the spectral index maps to verify our results. We use the spectral index maps to study the spectral index evolution along the jet and determine the spectral distributions in different locations of the jets. The core spectral indices are on average flat with mean value +0.22 ± 0.03 for the sample, while the jet spectrum is in general steep with a mean index of −1.04 ± 0.03. A simple power-law fit is often inadequate for the core regions, as expected if the cores are partially self-absorbed. The overall jet spectrum steepens at a rate of about −0.001 to −0.004 per deprojected parsec when moving further out from the core with flat spectrum radio quasars having significantly steeper spectra (mean −1.09 ± 0.04) than the BL Lac objects (mean −0.80 ± 0.05). However, the spectrum in both types of objects flattens on average by ∼ 0.2 at the locations of the jet components indicating particle acceleration or density enhancements along the jet. The mean spectral index at the component locations of −0.81 ± 0.02 corresponds to a power-law index of ∼ 2.6 for the electron energy distribution. We find a significant trend that jet components with linear polarization parallel to the jet (magnetic field perpendicular to the jet) have flatter spectra, as expected for transverse shocks. Compared to quasars, BL Lacs have more jet components with perpendicular magnetic field alignment, which may explain their generally flatter spectra. The overall steepening of the spectra with distance can be explained with radiative losses if the jets are collimating or with the evolution of the high-energy cutoff in the electron spectrum if the jets are conical. This interpretation is supported by a significant correlation with the age of the component and the spectral index, with older components having steeper spectra.
During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ∼ 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (α UV −O ∼ 0.5, F ν ∝ ν −α ), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P ) plane. The nucleus has a much steeper spectrum (α UV −O ∼ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.
The unusually short durations, high luminosities and high photon energies of the Crab nebula gamma-ray flares require the relativistic bulk motion of the emitting plasma. We explain the Crab flares as a result of randomly oriented relativistic 'minijets' originating from reconnection events in a magnetically dominated plasma. We develop a statistical model of the emission from Doppler boosted reconnection minijets and find analytical expressions for the moments of the resulting nebula light curve (e.g. time average, variance, skewness). The light curve has a flat power spectrum that transitions at short time-scales to a decreasing power law of index 2. The flux distribution from minijets follows a decreasing power law of index ∼1, implying that the average flux from flares is dominated by bright rare events. The predictions for the flares' statistics can be tested against forthcoming observations. We find that the observed flare spectral energy distributions (SEDs) have several notable features: a hard power-law index of p 1 for accelerated particles that is expected in various reconnection models, including some evidence of a pile-up near the radiation reaction limit. Also, the photon energy at which the SED peaks is higher than that implied by the synchrotron radiation reaction limit, indicating that the flare emission regions' Doppler factors are a few. We conclude that magnetic reconnection can be an important, if not dominant, mechanism of particle acceleration within the nebula.
We report that active galactic nucleus (AGN) jets are causally connected on parsec scales, based on 15 GHz Very Long Baseline Array (VLBA) data from a sample of 133 AGN jets. This result is achieved through a new method for measuring the product of the jet Lorentz factor and the intrinsic opening angle Γθ j from measured apparent opening angles in flux density limited samples of AGN jets. The Γθ j parameter is important for jet physics because it is related to the jet-frame sidewise expansion speed and causal connection between the jet edges and its symmetry axis. Most importantly, the standard model of jet production requires that the jet be causally connected with its symmetry axis, implying that Γθ j < ∼ 1. When we apply our method to the MOJAVE flux density limited sample of radio loud objects, we find Γθ j ≈ 0.2, implying that AGN jets are causally connected. We also find evidence that AGN jets viewed very close to the line of sight effectively have smaller intrinsic opening angles compared with jets viewed more off-axis, which is consistent with Doppler beaming and a fast inner spine/slow outer sheath velocity field. Notably, gamma-ray burst (GRB) jets have a typical Γθ j that is two orders of magnitude higher, suggesting that different physical mechanisms are at work in GRB jets compared to AGN jets. A useful application of our result is that a jet's beaming parameters can be derived. Assuming Γθ j is approximately constant in the AGN jet population, an individual jet's Doppler factor and Lorentz factor (and therefore also its viewing angle) can be determined using two observable quantities: apparent jet opening angle and the apparent speed of jet components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.