No abstract
A five-gene "oxidative stress protection" cluster has recently been described from the strictly anaerobic, acetogenic bacterium, Moorella thermoacetica [Das, A., et al. (2001) J. Bacteriol. 183, 1560-1567]. Within this cluster are two cotranscribed genes, fprA (for A-type flavoprotein) and hrb (for high molecular weight rubredoxin) whose encoded proteins have no known functions. Here we show that FprA and Hrb are expressed in M. thermoacetica under normal anaerobic growth conditions and report characterizations of the recombinant FprA and Hrb. FprA contains flavin mononucleotide (FMN) and a non-heme diiron site. Mössbauer spectroscopy shows that the irons of the diferric site are antiferromagnetically coupled, implying a single-atom, presumably solvent, bridge between the irons. Hrb contains FMN and a rubredoxin-like [Fe(SCys)4] site. NADH does not directly reduce either the FMN or the diiron site in FprA, whereas Hrb functions as an efficient NADH:FprA oxidoreductase. Substitution of zinc for iron in Hrb completely abolished this activity. The observation that homologues of FprA from other organisms show O2 and/or anaerobic NO consumption activity prompted an examination of these activities for M. thermoacetica FprA. The Hrb/FprA combination does indeed have both NADH:O2 and NADH:NO oxidoreductase activities. The NO reductase activity, however, was significantly more efficient due to a lower Km for NO (4 M) and to progressive and irreversible inactivation of FprA during O2 reductase turnover but retention of activity during NO reductase turnover. Substitution of zinc for iron in FprA completely abolished these reductase activities. The stoichiometry of 1 mol of NADH oxidized:2 mol of NO consumed implies reduction to N2O. Fits of an appropriate rate law to the kinetics data are consistent with a mechanism in which 2NO's react at each FprA active site in the committed step. Expression of FprA in an Escherichia coli strain deficient in NO reductase restored the anaerobic growth phenotype of cultures exposed to otherwise toxic levels of exogenous NO. The accumulated results indicate that Hrb/FprA is fully capable of functioning in nitrosative stress protection in M. thermoacetica.
Superoxide reductases (SORs) contain a novel square pyramidal ferrous [Fe(NHis)(4)(SCys)] site that rapidly reduces superoxide to hydrogen peroxide. Here we report extensive pulse radiolysis studies on recombinant two-iron SOR (2Fe-SOR) from Desulfovibrio vulgaris. The results support and elaborate on our originally proposed scheme for reaction of the [Fe(NHis)(4)(SCys)] site with superoxide [Coulter, E. D., Emerson, J. E., Kurtz, D. M., Jr., and Cabelli, D. E. (2000) J. Am. Chem. Soc. 122, 11555-11556]. This scheme consists of second-order diffusion-controlled formation of an intermediate absorbing at approximately 600 nm, formulated as a ferric-(hydro)peroxo species, and its decay to the carboxylate-ligated ferric [Fe(NHis)(4)(SCys)] site with loss of hydrogen peroxide. The second-order rate constant for formation of the 600-nm intermediate is essentially pH-independent (pH 5-9.5), shows no D(2)O solvent isotope effect at pH 7.7, and decreases with increasing ionic strength. These data indicate that formation of the intermediate does not involve a rate-determining protonation, and are consistent with interaction of the incoming superoxide anion with a positive charge at or near the ferrous [Fe(NHis)(4)(SCys)] site. The rate constant for decay of the 600-nm intermediate follows the pH-dependent rate law: k(2)(obs) = k(2)'[H(+)] + k(2)' ' and shows a significant D(2)O solvent isotope effect at pH 7.7. The values of k(2)' and k(2)' ' indicate that the 600-nm intermediate decays via diffusion-controlled protonation at acidic pHs and a first-order process involving either water or a water-exchangeable proton on the protein at basic pHs. The formation and decay rate constants for an E47A variant of 2Fe-SOR are not significantly perturbed from their wild-type values, indicating that the conserved glutamate carboxylate does not directly displace the (hydro)peroxo ligand of the intermediate at basic pHs. The kinetics of a K48A variant are consistent with participation of the lysyl side chain in directing the superoxide toward the active site and in directing the protonation pathway of the ferric-(hydro)peroxo intermediate toward release of hydrogen peroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.