General knowledge of dioxygen-activating mononuclear non-heme iron(II) enzymes containing a 2-His-1-carboxylate facial triad has significantly expanded in the last few years, due in large part to the extensive library of crystal structures that is now available. The common structural motif utilized by this enzyme superfamily acts as a platform upon which a wide assortment of substrate transformations are catalyzed. The facial triad binds a divalent metal ion at the active site, which leaves the opposite face of the octahedron available to coordinate a variety of exogenous ligands. The binding of substrate activates the metal center for attack by dioxygen, which is subsequently converted to a high-valent iron intermediate, a formidable oxidizing species. Herein, we summarize crystallographic and mechanistic features of this metalloenzyme superfamily, which has enabled the proposal of a common but flexible pathway for dioxygen activation.
Superoxide reductases (SORs) contain a novel square pyramidal ferrous [Fe(NHis)(4)(SCys)] site that rapidly reduces superoxide to hydrogen peroxide. Here we report extensive pulse radiolysis studies on recombinant two-iron SOR (2Fe-SOR) from Desulfovibrio vulgaris. The results support and elaborate on our originally proposed scheme for reaction of the [Fe(NHis)(4)(SCys)] site with superoxide [Coulter, E. D., Emerson, J. E., Kurtz, D. M., Jr., and Cabelli, D. E. (2000) J. Am. Chem. Soc. 122, 11555-11556]. This scheme consists of second-order diffusion-controlled formation of an intermediate absorbing at approximately 600 nm, formulated as a ferric-(hydro)peroxo species, and its decay to the carboxylate-ligated ferric [Fe(NHis)(4)(SCys)] site with loss of hydrogen peroxide. The second-order rate constant for formation of the 600-nm intermediate is essentially pH-independent (pH 5-9.5), shows no D(2)O solvent isotope effect at pH 7.7, and decreases with increasing ionic strength. These data indicate that formation of the intermediate does not involve a rate-determining protonation, and are consistent with interaction of the incoming superoxide anion with a positive charge at or near the ferrous [Fe(NHis)(4)(SCys)] site. The rate constant for decay of the 600-nm intermediate follows the pH-dependent rate law: k(2)(obs) = k(2)'[H(+)] + k(2)' ' and shows a significant D(2)O solvent isotope effect at pH 7.7. The values of k(2)' and k(2)' ' indicate that the 600-nm intermediate decays via diffusion-controlled protonation at acidic pHs and a first-order process involving either water or a water-exchangeable proton on the protein at basic pHs. The formation and decay rate constants for an E47A variant of 2Fe-SOR are not significantly perturbed from their wild-type values, indicating that the conserved glutamate carboxylate does not directly displace the (hydro)peroxo ligand of the intermediate at basic pHs. The kinetics of a K48A variant are consistent with participation of the lysyl side chain in directing the superoxide toward the active site and in directing the protonation pathway of the ferric-(hydro)peroxo intermediate toward release of hydrogen peroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.