General knowledge of dioxygen-activating mononuclear non-heme iron(II) enzymes containing a 2-His-1-carboxylate facial triad has significantly expanded in the last few years, due in large part to the extensive library of crystal structures that is now available. The common structural motif utilized by this enzyme superfamily acts as a platform upon which a wide assortment of substrate transformations are catalyzed. The facial triad binds a divalent metal ion at the active site, which leaves the opposite face of the octahedron available to coordinate a variety of exogenous ligands. The binding of substrate activates the metal center for attack by dioxygen, which is subsequently converted to a high-valent iron intermediate, a formidable oxidizing species. Herein, we summarize crystallographic and mechanistic features of this metalloenzyme superfamily, which has enabled the proposal of a common but flexible pathway for dioxygen activation.
Thiolate-ligated oxoiron(IV) centers are postulated to be the key oxidants in the catalytic cycles of oxygen-activating cytochrome P450 and related enzymes. Despite considerable synthetic efforts, chemists have not succeeded in preparing an appropriate model complex. Here we report the synthesis and spectroscopic characterization of [FeIV(O)(TMCS)]+ where TMCS is a pentadentate ligand that provides a square pyramidal N4(SR)apical, where SR is thiolate, ligand environment about the iron center, which is similar to that of cytochrome P450. The rigidity of the ligand framework stabilizes the thiolate in an oxidizing environment. Reactivity studies suggest that thiolate coordination favors hydrogen-atom abstraction chemistry over oxygen-atom transfer pathways in the presence of reducing substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.