We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at 1 < z < 1.5 from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at z > 1.35. Using infrared luminosities measured with deep Spitzer/MIPS observations at 24 µm, along with robust optical+IRAC photometric redshifts and SED-fitted stellar masses, we present the dust-obscured starforming fractions, star formation rates and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that z ∼ 1.4 represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at z > 1.4 environmentdependent quenching had not yet been established in ISCS clusters. Combining these observations with complementary studies showing a rapid increase in the AGN fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGN. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.
The XIS is an X-ray Imaging Spectrometer system, consisting of state-of-the-art charge-coupled devices (CCDs) optimized for X-ray detection, camera bodies, and control electronics. Four sets of XIS sensors are placed at the focal planes of the grazing-incidence, nested thin-foil mirrors (XRT: X-Ray Telescope) onboard the Suzaku satellite. Three of the XIS sensors have front-illuminated CCDs, while the other has a back-illuminated CCD. Coupled with the XRT, the energy range of 0.2-12 keV with energy resolution of 130 eV at 5.9 keV, and a field of view of 18 × 18 are realized. Since the Suzaku launch on 2005 July 10, the XIS has been functioning well.
We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z ∼ 0 to z ∼ 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner ∼100 kpc has not changed dramatically since z ∼ 1, implying that feedback must be providing nearly constant energy injection to maintain the observed "entropy floor" at ∼10 keV cm 2 . While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density (ρ g,0 /ρ crit ) increasing by an order of magnitude from z ∼ 1 to z ∼ 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, ∼150 M yr −1 cooling flow that is unable to cool below entropies of 10 keV cm 2 and, instead, accumulates in the cluster center. We estimate that cool cores began to
We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity L X , ICM mass M ICM , emission-weighted mean temperature T X , and integrated pressure Y X , that are derived from XMM-Newton X-ray observations of a Sunyaev-Zel'dovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of 0.20 < z < 1.5. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters (M 500 ≥ 3 × 10 14 M ) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with ≥ 2.5σ significance in the case of L X and M ICM . The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for L X . There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables. −0.16 7 3 0.28 +0.07 −0.09 0.02 +0.48 −0.58 0.76 +0.76 −0.71 III with fixed SZE params 9.93 +0.58 −0.49 1.90 +0.13 −0.18 7 3 0.25 +0.07 −0.06 −0.18 +0.48 −0.32 0.80 +0.93 −0.57
The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M ≥ 10 14 M ) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z ∼ 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f A = 3.0 +2.4 −1.4 % for AGN with a rest-frame, hard X-ray luminosity greater than L X,H ≥ 10 44 erg/s. This fraction is measured relative to all cluster galaxies more luminous than M * 3.6 (z) + 1, where M * 3.6 (z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6µm bandpass. The cluster AGN fraction is 30 times greater than the 3σ upper limit on the value for AGN of similar luminosity at z ∼ 0.25, as well as more than an order of magnitude greater than the AGN fraction at z ∼ 0.75. AGN with L X,H ≥ 10 43 erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z ∼ 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.