To understand the mechanisms of cell fate determination in the vertebrate retina, the time course of the generation of the major cell types needs to be established. This will help define and interpret patterns of gene expression, waves of differentiation, timing and extent of competence, and many of the other developmental processes involved in fate acquisition. A thorough retinal cell "birthdating" study has not been performed for the laboratory rat, even though it is the species of choice for many contemporary developmental studies of the vertebrate retina. We investigated the timing and spatial pattern of cell genesis using 3H-thymidine (3H-TdR). A single injection of 3H-TdR was administered to pregnant rats or rat pups between embryonic day (E) 8 and postnatal day (P) 13. The offspring of prenatally injected rats were delivered and all animals survived to maturity. Labeled cells were visualized by autoradiography of retinal sections. Rat retinal cell genesis commenced around E10, 50% of cells were born by approximately P1, and retinogenesis was complete near P12. The first postmitotic cells were found in the retinal ganglion cell layer and were 9-15 microm in diameter. This range includes small to medium diameter retinal ganglion cells and large displaced amacrine cells. The sequence of cell genesis was established by determining the age at which 5, 50, and 95% of the total population of cells of each phenotype became postmitotic. With few exceptions, the cell types reached these developmental landmarks in the following order: retinal ganglion cells, horizontal cells, cones, amacrine cells, rods, bipolar cells, and Müller glia. For each type, the first cells generated were located in the central retina and the last cells in the peripheral retina. Within the sequence of cell genesis, two or three phases could be detected based on differences in timing, kinetics, and topographic gradients of cell production. Our results show that retinal cells in the rat are generated in a sequence similar to that of the primate retina, in which retinogenesis spans more than 100 days. To the extent that sequences reflect underlying mechanisms of cell fate determination, they appear to be conserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.