To understand the mechanisms of cell fate determination in the vertebrate retina, the time course of the generation of the major cell types needs to be established. This will help define and interpret patterns of gene expression, waves of differentiation, timing and extent of competence, and many of the other developmental processes involved in fate acquisition. A thorough retinal cell "birthdating" study has not been performed for the laboratory rat, even though it is the species of choice for many contemporary developmental studies of the vertebrate retina. We investigated the timing and spatial pattern of cell genesis using 3H-thymidine (3H-TdR). A single injection of 3H-TdR was administered to pregnant rats or rat pups between embryonic day (E) 8 and postnatal day (P) 13. The offspring of prenatally injected rats were delivered and all animals survived to maturity. Labeled cells were visualized by autoradiography of retinal sections. Rat retinal cell genesis commenced around E10, 50% of cells were born by approximately P1, and retinogenesis was complete near P12. The first postmitotic cells were found in the retinal ganglion cell layer and were 9-15 microm in diameter. This range includes small to medium diameter retinal ganglion cells and large displaced amacrine cells. The sequence of cell genesis was established by determining the age at which 5, 50, and 95% of the total population of cells of each phenotype became postmitotic. With few exceptions, the cell types reached these developmental landmarks in the following order: retinal ganglion cells, horizontal cells, cones, amacrine cells, rods, bipolar cells, and Müller glia. For each type, the first cells generated were located in the central retina and the last cells in the peripheral retina. Within the sequence of cell genesis, two or three phases could be detected based on differences in timing, kinetics, and topographic gradients of cell production. Our results show that retinal cells in the rat are generated in a sequence similar to that of the primate retina, in which retinogenesis spans more than 100 days. To the extent that sequences reflect underlying mechanisms of cell fate determination, they appear to be conserved.
Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR.
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
Little is known about how lipid mobilization and utilization are modulated during stem-cell-driven tissue growth during regeneration. Planarian flatworms can regenerate all missing tissues in 10 days due to the proliferation and differentiation of pluripotent somatic stem cells called neoblasts. In planarians, diet-derived neutral lipids are stored in the intestine. Here, we identify two intestine-enriched paralogs of apolipoprotein b, apob-1 and apob-2, that are required for regeneration. Consistent with apolipoproteins' known roles regulating neutral lipid (NL) transport in lipoprotein particles (LPs), NLs increased in the intestine upon simultaneous dsRNA-mediated knockdown of apob-1 and apob-2, but were depleted in neoblasts and their progeny. apob knockdown reduced regeneration blastema morphogenesis, and delayed re-establishment of axial polarity and regeneration of multiple organs. Using flow cytometry, we found that neoblast progeny accumulated in apob(RNAi) animals, with minimal effects on neoblast maintenance or proliferation. In addition, ApoB reduction primarily dysregulated expression of transcripts enriched in neoblast progeny and mature cell types, compared to cycling neoblasts. Together, our results provide evidence that intestine-derived lipids serve as a source of metabolites required for neoblast differentiation. In addition, these findings demonstrate that planarians are a tractable model for elucidating specialized mechanisms by which lipid metabolism must be regulated during animal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.