Proper function and repair of the digestive system are vital to most animals. Deciphering the mechanisms involved in these processes requires an atlas of gene expression and cell types. Here, we applied laser-capture microdissection (LCM) and RNA-seq to characterize the intestinal transcriptome of Schmidtea mediterranea, a planarian flatworm that can regenerate all organs, including the gut. We identified hundreds of genes with intestinal expression undetected by previous approaches. Systematic analyses revealed extensive conservation of digestive physiology and cell types with other animals, including humans. Furthermore, spatial LCM enabled us to uncover previously unappreciated regionalization of gene expression in the planarian intestine along the medio-lateral axis, especially among intestinal goblet cells. Finally, we identified two intestine-enriched transcription factors that specifically regulate regeneration (hedgehog signaling effector gli-1) or maintenance (RREB2) of goblet cells. Altogether, this work provides resources for further investigation of mechanisms involved in gastrointestinal function, repair and regeneration.
Woody plant encroachment of eastern red cedar (Juniperus virginiana) into native grasslands in the U.S. Southern Great Plains has significantly affected the production of forage and livestock, wildlife habitats, as well as water, carbon, nutrient and biogeochemical cycles. However, time series of red cedar maps are still not available to document the continuously spatio-temporal dynamics of red cedar encroachment across landscape, watershed and regional scales. In this study, we developed a pixel and phenology-based mapping algorithm, and used it to analyze PALSAR mosaic data in 2010 and all the available Landsat 5/7 data during 1984-2010 with the Google Earth Engine (GEE) platform. This pilot study analyzed 4,233 images covering more than 10 counties in the central region of Oklahoma, and generated red cedar forest
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
MLOs in Plant Reproduction. The MILDEW RESISTANCE LOCUS-O (MLO) protein family, comprised of 15 members, plays roles in diverse cell-cell communication processes such as powdery mildew susceptibility, root thigmomorphogenesis, and pollen tube reception. The NORTIA (NTA, AtMLO7) gene is expressed in the synergid cells of the female gametophyte where it functions in intercellular communication with the pollen tube. Discrepancies between previously published promoter::GUS and promoter::gene-GUS constructs expression patterns led us to explore the regulation of NTA expression. Here we found via NTA::gNTA-GUS truncations that sequences within the NTA gene negatively regulate its expression in the stomata and carpel walls. This led to the hypothesis that other MLO family members may also have additional regulatory sequences within the gene. MLO::gMLO-GUS constructs were examined for each family member focusing specifically on flowers in order to determine whether other MLOs could play a role in reproductive cell-cell communication. Notably, several MLOs were expressed in the pollen, in the stigma, in the pollinated style, and in the synergids and central cell. These findings indicate that other MLOs in addition to NTA could play a role in reproduction. Previous studies on the MLO family showed that phylogenetically related MLOs had redundant functions in powdery mildew infection and root thigmomorphogenesis; however, MLO expression in reproductive tissues did not strictly follow phylogenetic relationships, indicating that MLOs from different evolutionary origins may have been recruited for function in sexual reproduction.
Organ regeneration requires precise coordination of new cell differentiation and remodeling of uninjured tissue to faithfully re-establish organ morphology and function. An atlas of gene expression and cell types in the uninjured state is therefore an essential pre-requisite for understanding how damage is repaired. Here, we use laser-capture microdissection (LCM) and RNA-Seq to define the transcriptome of the intestine of Schmidtea mediterranea, a planarian flatworm with exceptional regenerative capacity. Bioinformatic analysis of 1,844 intestine-enriched transcripts suggests extensive conservation of digestive physiology with other animals, including humans. Comparison of the intestinal transcriptome to purified absorptive intestinal cell (phagocyte) and published single-cell expression profiles confirms the identities of known intestinal cell types, and also identifies hundreds of additional transcripts with previously undetected intestinal enrichment. Furthermore, by assessing the expression patterns of 143 transcripts in situ, we discover unappreciated mediolateral regionalization of gene expression and cell-type diversity, especially among goblet cells. Demonstrating the utility of the intestinal transcriptome, we identify 22 intestine-enriched transcription factors, and find that several have distinct functional roles in the regeneration and maintenance of goblet cells. Furthermore, depletion of goblet cells inhibits planarian feeding and reduces viability. Altogether, our results show that LCM is a viable approach for assessing tissue-specific gene expression in planarians, and provide a new resource for further investigation of digestive tract regeneration, the physiological roles of intestinal cell types, and axial polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.