Growth plate abnormalities, associated with impaired hypertrophic chondrocyte apoptosis, are observed in humans and animals with abnormalities of vitamin D action and renal phosphate reabsorption. Low circulating phosphate levels impair hypertrophic chondrocyte apoptosis, whereas treatment of these cells with phosphate activates the mitochondrial apoptotic pathway. Because phosphate-mediated apoptosis of chondrocytes is differentiation-dependent, studies were performed to identify factors that contribute to hypertrophic chondrocyte apoptosis. An increase in the percentage of cells with low mitochondrial membrane potential, evaluated by JC-1 fluorescence, was observed during hypertrophic differentiation of primary murine chondrocytes in culture. This percentage was further increased by treatment of hypertrophic, but not proliferative, chondrocytes with phosphate. Phosphate-mediated apoptosis was observed as early as 30 min post-treatment and was dependent upon Erk1/2 phosphorylation. Inhibition of Erk1/2 phosphorylation in vivo confirmed an important role for this signaling pathway in regulating hypertrophic chondrocyte apoptosis in growing mice. Murine embryonic metatarsals cultured under phosphate-restricted conditions demonstrated a 2.5-fold increase in parathyroid hormone-related protein mRNA expression accompanied by a marked attenuation in phospho-Erk immunoreactivity in hypertrophic chondrocytes. Thus, these investigations point to an important role for phosphate in regulating mitochondrial membrane potential in hypertrophic chondrocytes and growth plate maturation by the parathyroid hormone-related protein signaling pathway.Maturation of the growth of long bones is dependent upon the differentiation of proliferative chondrocytes into prehypertrophic and subsequently hypertrophic chondrocytes. Terminal differentiation of hypertrophic chondrocytes is characterized by the expression of signaling molecules that promote vascular invasion, apoptosis, and replacement of hypertrophic chondrocytes by osteoblasts that lay down the primary spongiosa of bone. Aberrant regulation of this developmental process results in growth plate disorders. Although calcium has been shown to play an important role in regulating chondrocyte maturation (1), apoptosis of terminally differentiated hypertrophic chondrocytes is dependent upon normal levels of circulating phosphate (2).Rickets is a growth plate anomaly observed in growing animals and humans with abnormalities of vitamin D action and renal phosphate reabsorption (3-6). In vivo investigations in genetically modified and dietary-manipulated mouse models demonstrate that hypophosphatemia is the underlying metabolic abnormality that impairs growth plate maturation in these disorders: low circulating phosphate levels result in impaired apoptosis of terminally differentiated hypertrophic chondrocytes in the growth plate, leading to rickets (2). The observation that inhibition of phosphate transport prevents phosphate-mediated apoptosis in hypertrophic chondrocytes (7-9) further ...
Wdr5 is developmentally expressed in osteoblasts and accelerates osteoblast differentiation in vitro and in vivo. To address whether Wdr5 is essential for osteoblast differentiation, plasmid-based small interfering RNAs were used to stably suppress endogenous Wdr5 protein levels in MC3T3-E1 cells. Reduction of endogenous Wdr5 levels markedly inhibited osteoblast differentiation, evidenced by a significant decrease in alkaline phosphatase activity, Runx-2 and osteocalcin mRNAs, and absence of mineralized matrix formation. Wdr5 suppression also resulted in a reduction of histone H3 lysine 4 trimethylation, confirming its critical role in this modification. Because Wdr5 overexpression enhances canonical Wnt signaling in osteoblasts in vivo, the effects of Wdr5 silencing on this pathway were examined. The expression of the canonical Wnt target gene, c-myc, was decreased, whereas that of sfrp2, which is repressed by Wnt signaling, was increased with Wdr5 knockdown. Although only a minimal increase in apoptosis was observed, the antiapoptotic effect of Wnt signaling was also impaired with Wdr5 silencing. The expression of canonical Wnts was significantly decreased with Wdr5 knockdown, resulting in a decrease in nuclear -catenin protein levels. Activation of the canonical Wnt signaling pathway did not overcome the effects of Wdr5 knockdown on the expression of Wnt target genes. Chromatin immunoprecipitation demonstrated that Wdr5 is present on the Wnt1 promoter and on canonical Wnt response elements of the c-myc and Runx-2 promoters. These studies demonstrate that Wdr5 suppression interferes with the canonical Wnt signaling pathway at multiple stages and that optimal Wdr5 levels are required for induction of the osteoblast phenotype.Wdr5, a BMP-2-induced 2 gene, is a WD repeat protein that is essential for histone H3 lysine 4 (H3K4) trimethylation, a marker of actively transcribed genes (1, 2). Targeting expression of Wdr5 to osteoblasts using the 2.3-kb fragment of the mouse ␣(1) I collagen promoter results in acceleration of endochondral bone formation during embryonic development (3).Characterization of the molecular mechanisms by which Wdr5 overexpression exerts these effects demonstrated that Wdr5 enhances canonical Wnt signaling (3). Wnt proteins are secreted signaling factors that play a key role in development and in adult tissue homeostasis. These proteins bind to Frizzled G protein-coupled receptors and low density lipoprotein receptor-related protein (LRP) cell surface co-receptors. Signaling by the Wnt/-catenin pathway, also referred to as the canonical Wnt signaling pathway, impairs degradation of cytoplasmic -catenin, resulting in its nuclear translocation and regulation of target gene expression. The canonical Wnt signaling pathway has been shown to promote osteoblast differentiation during skeletal development and to regulate bone mass accrual postnatally (4 -15). The findings that loss and gain of function mutations in the Wnt co-receptor LRP5 result in low and high bone mass, respectively, and that...
The vitamin D receptor (VDR) has both 1,25-dihydroxyvitamin D-dependent and -independent actions in the epidermis. Ligand-dependent actions of the VDR have been shown to promote keratinocyte differentiation and to regulate formation of the epidermal barrier. In contrast, the actions of the VDR that regulate postmorphogenic hair cycling do not require 1,25-dihydroxyvitamin D. The VDR also has immunomodulatory actions that are dependent on its ligand, 1,25-dihydroxyvitamin D. To determine whether the ligand-dependent or -independent actions of the VDR regulate the inflammatory response to cutaneous injury, studies were performed in control, VDR knockout, and vitamin D-deficient mice. These investigations demonstrate that absence of receptor or ligand impairs the dermal response to cutaneous injury. Although neutrophil recruitment is not affected, the absence of VDR signaling leads to defects in macrophage recruitment and granulation tissue formation. Studies performed to identify the molecular basis for this phenotype demonstrate that absence of the VDR, or its ligand, impairs TGF-β signaling in the dermis, characterized by decreased expression of monocyte chemotactic protein-1 and reduced phosphorylation of phosphorylated Smad-3 as well as attenuated phosphorylated Smad-3 phosphorylation in response to TGF-β in primary dermal fibroblasts lacking the VDR. Thus, these data demonstrate that the liganded VDR interacts with the TGF-β signaling pathway to promote the normal inflammatory response to cutaneous injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.