Machine learning algorithms that are both interpretable and accurate are essential in applications such as medicine where errors can have a dire consequence. Unfortunately, there is currently a tradeoff between accuracy and interpretability among state-of-the-art methods. Decision trees are interpretable and are therefore used extensively throughout medicine for stratifying patients. Current decision tree algorithms, however, are consistently outperformed in accuracy by other, less-interpretable machine learning models, such as ensemble methods. We present MediBoost, a novel framework for constructing decision trees that retain interpretability while having accuracy similar to ensemble methods, and compare MediBoost’s performance to that of conventional decision trees and ensemble methods on 13 medical classification problems. MediBoost significantly outperformed current decision tree algorithms in 11 out of 13 problems, giving accuracy comparable to ensemble methods. The resulting trees are of the same type as decision trees used throughout clinical practice but have the advantage of improved accuracy. Our algorithm thus gives the best of both worlds: it grows a single, highly interpretable tree that has the high accuracy of ensemble methods.
The reemergence of Deep Neural Networks (DNNs) has lead to high-performance supervised learning algorithms for the Electro-Optical (EO) domain classification and detection problems. This success is because generating huge labeled datasets has become possible using modern crowdsourcing labeling platforms such as Amazon’s Mechanical Turk that recruit ordinary people to label data. Unlike the EO domain, labeling the Synthetic Aperture Radar (SAR) domain data can be much more challenging, and for various reasons, using crowdsourcing platforms is not feasible for labeling the SAR domain data. As a result, training deep networks using supervised learning is more challenging in the SAR domain. In the paper, we present a new framework to train a deep neural network for classifying Synthetic Aperture Radar (SAR) images by eliminating the need for a huge labeled dataset. Our idea is based on transferring knowledge from a related EO domain problem, where labeled data are easy to obtain. We transfer knowledge from the EO domain through learning a shared invariant cross-domain embedding space that is also discriminative for classification. To this end, we train two deep encoders that are coupled through their last year to map data points from the EO and the SAR domains to the shared embedding space such that the distance between the distributions of the two domains is minimized in the latent embedding space. We use the Sliced Wasserstein Distance (SWD) to measure and minimize the distance between these two distributions and use a limited number of SAR label data points to match the distributions class-conditionally. As a result of this training procedure, a classifier trained from the embedding space to the label space using mostly the EO data would generalize well on the SAR domain. We provide a theoretical analysis to demonstrate why our approach is effective and validate our algorithm on the problem of ship classification in the SAR domain by comparing against several other competing learning approaches.
Machine learning is proving invaluable across disciplines. However, its success is often limited by the quality and quantity of available data, while its adoption is limited by the level of trust afforded by given models. Human vs. machine performance is commonly compared empirically to decide whether a certain task should be performed by a computer or an expert. In reality, the optimal learning strategy may involve combining the complementary strengths of humans and machines. Here, we present expert-augmented machine learning (EAML), an automated method that guides the extraction of expert knowledge and its integration into machine-learned models. We used a large dataset of intensive-care patient data to derive 126 decision rules that predict hospital mortality. Using an online platform, we asked 15 clinicians to assess the relative risk of the subpopulation defined by each rule compared to the total sample. We compared the clinician-assessed risk to the empirical risk and found that, while clinicians agreed with the data in most cases, there were notable exceptions where they overestimated or underestimated the true risk. Studying the rules with greatest disagreement, we identified problems with the training data, including one miscoded variable and one hidden confounder. Filtering the rules based on the extent of disagreement between clinician-assessed risk and empirical risk, we improved performance on out-of-sample data and were able to train with less data. EAML provides a platform for automated creation of problem-specific priors, which help build robust and dependable machine-learning models in critical applications.
Abstract. In this paper, we propose a novel graph-based method for knowledge transfer. We model the transfer relationships between source tasks by embedding the set of learned source models in a graph using transferability as the metric. Transfer to a new problem proceeds by mapping the problem into the graph, then learning a function on this graph that automatically determines the parameters to transfer to the new learning task. This method is analogous to inductive transfer along a manifold that captures the transfer relationships between the tasks. We demonstrate improved transfer performance using this method against existing approaches in several real-world domains.
In a lifelong learning framework, an agent acquires knowledge incrementally over consecutive learning tasks, continually building upon its experience. Recent lifelong learning algorithms have achieved nearly identical performance to batch multi-task learning methods while reducing learning time by three orders of magnitude. In this paper, we further improve the scalability of lifelong learning by developing curriculum selection methods that enable an agent to actively select the next task to learn in order to maximize performance on future learning tasks. We demonstrate that active task selection is highly reliable and effective, allowing an agent to learn high performance models using up to 50% fewer tasks than when the agent has no control over the task order. We also explore a variant of transfer learning in the lifelong learning setting in which the agent can focus knowledge acquisition toward a particular target task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.