The U.S. National Blend of Models provides statistically postprocessed, high-resolution multimodel ensemble guidance, providing National Weather Service forecasters with a calibrated, downscaled starting point for producing digital forecasts. Forecasts of 12-hourly probability of precipitation (POP12) over the contiguous United States are produced as follows: 1) Populate the forecast and analyze cumulative distribution functions (CDFs) to be used later in quantile mapping. Were every grid point processed without benefit of data from other points, 60 days of training data would likely be insufficient for estimating CDFs and adjusting the errors in the forecast. Accordingly, “supplemental” locations were identified for each grid point, and data from the supplemental locations were used to populate the forecast and analyzed CDFs used in the quantile mapping. 2) Load the real-time U.S. and Environment Canada (now known as Environment and Climate Change Canada) global deterministic and ensemble forecasts, interpolated to ⅛°. 3) Using CDFs from the past 60 days of data, apply a deterministic quantile mapping to the ensemble forecasts. 4) Dress the resulting ensemble with random noise. 5) Generate probabilities from the ensemble relative frequency. 6) Spatially smooth the forecast using a Savitzky–Golay smoother, applying more smoothing in flatter areas. Forecasts of 6-hourly quantitative precipitation (QPF06) are more simply produced as follows: 1) Form a grand ensemble mean, again interpolated to ⅛°. 2) Quantile map the mean forecast using CDFs of the ensemble mean and analyzed distributions. 3) Spatially smooth the field, similar to POP12. Results for spring 2016 are provided, demonstrating that the postprocessing improves POP12 reliability and skill, as well as the deterministic forecast bias, while maintaining sharpness and spatial detail.
Monitoring of abnormal changes on the earth’s surface (e.g., forest disturbance) has improved greatly in recent years because of satellite remote sensing. However, high computational costs inherently associated with processing and analysis of satellite data often inhibit large-area and sub-annual monitoring. Normal seasonal variations also complicate the detection of abnormal changes at sub-annual scale in the time series of satellite data. Recently, however, computationally powerful platforms, such as the Google Earth Engine (GEE), have been launched to support large-area analysis of satellite data. Change detection methods with the capability to detect abnormal changes in time series data while accounting for normal seasonal variations have also been developed but are computationally intensive. Here, we report an implementation of BFASTmonitor (Breaks For Additive Season and Trend monitor) on GEE to support large-area and sub-annual change monitoring using satellite data available in GEE. BFASTmonitor is a data-driven unsupervised change monitoring approach that detects abnormal changes in time series data, with near real-time monitoring capabilities. Although BFASTmonitor has been widely used in forest cover loss monitoring, it is a generic change monitoring approach that can be used to monitor changes in a various time series data. Using Landsat time series for normalised difference moisture index (NDMI), we evaluated the performance of our GEE BFASTmonitor implementation (GEE BFASTmonitor) by detecting forest disturbance at three forest areas (humid tropical forest, dry tropical forest, and miombo woodland) while comparing it to the original R-based BFASTmonitor implementation (original BFASTmonitor). A map-to-map comparison showed that the spatial and temporal agreements on forest disturbance between the original and our GEE BFASTmonitor implementations were high. At each site, the spatial agreement was more than 97%, whereas the temporal agreement was over 94%. The high spatial and temporal agreement show that we have properly translated and implemented the BFASTmonitor algorithm on GEE. Naturally, due to different numerical solvers being used for regression model fitting in R and GEE, small differences could be observed in the outputs. These differences were most noticeable at the dry tropical forest and miombo woodland sites, where the forest exhibits strong seasonality. To make GEE BFASTmonitor accessible to non-technical users, we developed a web application with simplified user interface. We also created a JavaScript-based GEE BFASTmonitor package that can be imported as a module. Overall, our GEE BFASTmonitor implementation fills an important gap in large-area environmental change monitoring using earth observation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.