The influence of particle-polymer interactions on the ensemble average stress is derived as a function of the Deborah number for a dilute suspension of spheres in an Oldroyd-B fluid in the limit of small polymer concentrations. The slow rate of decay of the particle-induced polymer stress with separation from a particle presents a challenge to the derivation of the average stress, which can be overcome by removing the linearized polymer stress disturbance before computing the bulk average stress from the particle-induced disturbance. The linearized stress can be shown to have zero ensemble average. The polymer influence on the particle's stresslet is computed with the aid of a generalized reciprocal theorem based on a regular perturbation from Newtonian flow for small polymer concentration. The analysis shows that the particle-polymer contributions to the shear stress and first normal stress difference shear thicken as has been observed in the experiments of Scirocco et al.[Shear thickening in filled Boger fluids, J. Rheol. 49, 551 (2005)]. The particle-polymer contribution to the second normal stress difference is positive at small Deborah numbers but changes sign at a Deborah number of about 2.3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.