Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via a direct coupling mechanism that is independent of CT states. We show that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, despite weak direct coupling.
We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.
Singlet fission in organic semiconductors causes a singlet exciton to decay into a pair of triplet excitons and holds potential for increasing the efficiency of photovoltaic devices. In this combined experimental and theoretical study, we reveal that a covalent dimer of the organic semiconductor tetracene undergoes activated singlet fission by qualitatively different mechanisms depending on the solvent environment. We show that intramolecular vibrations are an integral part of this mechanism, giving rise to mixing between charge transfer and triplet pair excitations. Both coherent or incoherent singlet fission can occur, depending on transient solvent-induced energetic proximity between the states, giving rise to complex variation of the singlet fission mechanism and timescale in the different environments. Our results suggest a more general principle for controlling the efficiency of photochemical reactions by utilizing transient interactions to tune the energetics of reactant and product states and switch between incoherent and coherent dynamics. 1
Recent synthetic studies on the organic molecules tetracene and pentacene have found certain dimers and oligomers to exhibit an intense absorption in the visible region of the spectrum which is not present in the monomer or many previously-studied dimers. In this article we combine experimental synthesis with electronic structure theory and spectral computation to show that this absorption arises from an otherwise dark charge-transfer excitation 'borrowing intensity' from an intense UV excitation.Further, by characterizing the role of relevant monomer molecular orbitals, we arrive at a design principle that allows us to predict the presence or absence of an additional absorption based on the bonding geometry of the dimer. We find this rule correctly explains the spectra of a wide range of acene derivatives and solves an unexplained structure-spectrum phenomenon first observed seventy years ago. These results pave the way for the design of highly absorbent chromophores with applications ranging from photovoltaics to liquid crystals.
The discovery of molecules with tailored optoelectronic properties such as specific frequency and intensity of absorption or emission is a major challenge in creating next-generation organic light-emitting diodes (OLEDs) and photovoltaics. This raises the question: how can we predict a potential chemical structure from these properties? Approaches that attempt to tackle this inverse design problem include virtual screening, active machine learning and genetic algorithms. However, these approaches rely on a molecular database or many electronic structure calculations, and significant computational savings could be achieved if there was prior knowledge of (i) whether the optoelectronic properties of a parent molecule could easily be improved and (ii) what morphing operations on a parent molecule could improve these properties. In this perspective we address both of these challenges from first principles. We firstly adapt the Thomas-Reiche-Kuhn sum rule to organic chromophores and show how this indicates how easily the absorption and emission of a molecule can be improved. We then show how by combining electronic structure theory and intensity borrowing perturbation theory we can predict whether or not the proposed morphing operations will achieve the desired spectral alteration, and thereby derive widely-applicable design rules. We go on to provide proof-of-concept illustrations of this approach to optimizing the visible absorption of acenes and the emission of radical OLEDs. We believe this approach can be integrated into genetic algorithms by biasing morphing operations in favour of those which are likely to be successful, leading to faster molecular discovery and greener chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.