A numerical scheme is developed to simulate the propagation of weak acoustic shock waves in the atmosphere with no absorption. It generalizes the method previously developed for a heterogeneous medium [Dagrau, Rénier, Marchiano, and Coulouvrat, J. Acoust. Soc. Am. 130, 20-32 (2011)] to the case of a moving medium. It is based on an approximate scalar wave equation for potential, rewritten in a moving time frame, and separated into three parts: (i) the linear wave equation in a homogeneous and quiescent medium, (ii) the effects of atmospheric winds and of density and speed of sound heterogeneities, and (iii) nonlinearities. Each effect is then solved separately by an adapted method: angular spectrum for the wave equation, finite differences for the flow and heterogeneity corrections, and analytical method in time domain for nonlinearities. To keep a one-way formulation, only forward propagating waves are kept in the angular spectrum part, while a wide-angle parabolic approximation is performed on the correction terms. The numerical process is validated in the case of guided modal propagation with a shear flow. It is then applied to the case of blast wave propagation within a boundary layer flow over a flat and rigid ground.
In order to approach a flow configuration revealing the aerodynamic noise contribution in the interior of road vehicles due to the A-pillar vortex, a numerical simulation of a Forward Facing Step (FFS) coupled with a vibrating structure is performed. This numerical study is based on a weak coupling of three solvers to compute (i) the flow field in interaction with the FFS, (ii) the vibration of the structure and (iii) the acoustic radiation in the open cavity. The purpose of this work is then to evaluate the ability of two different post-processing methods: Proper Orthogonal Decomposition and Fourier Decomposition to identify the origin of the noise radiated into a cavity surrounded by an unsteady flow. Fourier and POD decompositions are then successively performed to extract the part of the aeroacoustic wall pressure field impacting the upper part of an upward step mainly related to the radiated acoustic pressure in the cavity. It is observed that the acoustic part, extracted from the wavenumber frequency decomposition (Fourier analysis) of the wall pressure field generates a non-negligible part of the interior cavity noise. However, this contribution is of several orders smaller than the one related to the aerodynamic part of the pressure field. Moreover, it is shown that the most energetic part of the pressure field (POD analysis) is due to the shear flapping motion and mainly contributes to the low-frequency noise in the cavity. Such post-processing results are of particular interest for future analyzes related to the noise radiated inside a car.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.