Blood lactate accumulation is a crucial fatigue indicator during sports training. Previous studies have predicted cycling fatigue using surface-electromyography (sEMG) to non-invasively estimate lactate concentration in blood. This study used sEMG to predict muscle fatigue while running and proposes a novel method for the automatic classification of running fatigue based on sEMG. Data were acquired from 12 runners during an incremental treadmill running-test using sEMG sensors placed on the vastus-lateralis, vastus-medialis, biceps-femoris, semitendinosus, and gastrocnemius muscles of the right and left legs. Blood lactate samples of each runner were collected every two minutes during the test. A change-point segmentation algorithm labeled each sample with a class of fatigue level as (1) aerobic, (2) anaerobic, or (3) recovery. Three separate random forest models were trained to classify fatigue using 36 frequency, 51 time-domain, and 36 time-event sEMG features. The models were optimized using a forward sequential feature elimination algorithm. Results showed that the random forest trained using distributive power frequency of the sEMG signal of the vastus-lateralis muscle alone could classify fatigue with high accuracy. Importantly for this feature, group-mean ranks were significantly different (p < 0.01) between fatigue classes. Findings support using this model for monitoring fatigue levels during running.
Development, testing and validation of algorithms for smart home applications are often complex, expensive and tedious processes. Research on simulation of resident activity patterns in Smart Homes is an active research area and facilitates development of algorithms of smart home applications. However, the simulation of passive infrared (PIR) sensors is often used in a static fashion by generating equidistant events while an intended occupant is within sensor proximity. This paper suggests the combination of avatar-based control and probabilistic sampling in order to increase realism of the simulated data. The number of PIR events during a time interval is assumed to be Poisson distributed and this assumption is used in the simulation of Smart Home data. Results suggest that the proposed approach increase realism of simulated data, however results also indicate that improvements could be achieved using the geometric distribution as a model for the number of PIR events during a time interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.