BackgroundSingle nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations.ResultsModerate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained).ConclusionsFourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Over 28,000 expressed sequence tags (ESTs) were produced from cDNA libraries representing a variety of growth conditions and cell types. Several Magnaporthe grisea strains were used to produce the libraries, including a nonpathogenic strain bearing a mutation in the PMK1 mitogen-activated protein kinase. Approximately 23,000 of the ESTs could be clustered into 3,050 contigs, leaving 5,127 singleton sequences. The estimate of 8,177 unique sequences indicates that over half of the genes of the fungus are represented in the ESTs. Analysis of EST frequency reveals growth and cell type-specific patterns of gene expression. This analysis establishes criteria for identification of fungal genes involved in pathogenesis. A large fraction of the genes represented by ESTs have no known function or described homologs. Manual annotation of the most abundant cDNAs with no known homologs allowed us to identify a family of metallothionein proteins present in M. grisea, Neurospora crassa, and Fusarium graminearum. In addition, multiply represented ESTs permitted the identification of alternatively spliced mRNA species. Alternative splicing was rare, and in most cases, the alternate mRNA forms were unspliced, although alternative 5' splice sites were also observed.
The white-tailed deer (Odocoileus virginianus) represents one of the most successful and widely distributed large mammal species within North America, yet very little nucleotide sequence information is available. We utilized massively parallel pyrosequencing of a reduced representation library (RRL) and a random shotgun library (RSL) to generate a complete mitochondrial genome sequence and identify a large number of putative single nucleotide polymorphisms (SNPs) distributed throughout the white-tailed deer nuclear and mitochondrial genomes. A SNP validation study designed to test specific classes of putative SNPs provides evidence for as many as 10,476 genome-wide SNPs in the current dataset. Based on cytogenetic evidence for homology between cow (Bos taurus) and white-tailed deer chromosomes, we demonstrate that a divergent genome may be used for estimating the relative distribution and density of de novo sequence contigs as well as putative SNPs for species without draft genome assemblies. Our approach demonstrates that bioinformatic tools developed for model or agriculturally important species may be leveraged to support next-generation research programs for species of biological, ecological and evolutionary importance. We also provide a functional annotation analysis for the de novo sequence contigs assembled from white-tailed deer pyrosequencing reads, a mitochondrial phylogeny involving 13,722 nucleotide positions for 10 unique species of Cervidae, and a median joining haplotype network as a putative representation of mitochondrial evolution in O. virginianus. The results of this study are expected to provide a detailed template enabling genome-wide sequence-based studies of threatened, endangered or conservationally important non-model organisms.
Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite) have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao). More than 90% of the assembled bobwhite genome was captured within <40,000 final scaffolds (N50 = 45.4 Kb) despite evidence for approximately 3.22 heterozygous polymorphisms per Kb, and three annotation analyses produced evidence for >14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum) would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.
Members of the Toll-like receptor (TLR) gene family occupy key roles in the mammalian innate immune system by functioning as sentries for the detection of invading pathogens, thereafter provoking host innate immune responses. We utilized a custom next-generation sequencing approach and allele-specific genotyping assays to detect and validate 280 biallelic variants across all 10 bovine TLR genes, including 71 nonsynonymous single nucleotide polymorphisms (SNPs) and one putative nonsense SNP. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and specialized beef and dairy breeds could not be differentiated despite an average polymorphism density of 1 marker/158 bp. Collectively, 160 tagSNPs and two tag insertion-deletion mutations (indels) were sufficient to predict 100% of the variation at 280 variable sites for both Bos subspecies and their hybrids, whereas 118 tagSNPs and 1 tagIndel predictively captured 100% of the variation at 235 variable sites for B. t. taurus. Polyphen and SIFT analyses of amino acid (AA) replacements encoded by bovine TLR SNPs indicated that up to 32% of the AA substitutions were expected to impact protein function. Classical and newly developed tests of diversity provide strong support for balancing selection operating on TLR3 and TLR8, and purifying selection acting on TLR10. An investigation of the persistence and continuity of linkage disequilibrium (r2≥0.50) between adjacent variable sites also supported the presence of selection acting on TLR3 and TLR8. A case-control study employing validated variants from bovine TLR genes recognizing bacterial ligands revealed six SNPs potentially eliciting small effects on susceptibility to Mycobacterium avium spp paratuberculosis infection in dairy cattle. The results of this study will broadly impact domestic cattle research by providing the necessary foundation to explore several avenues of bovine translational genomics, and the potential for marker-assisted vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.