Zinc oxide is an important material with numerous applications due to its unique properties. Due to their thermal and chemical stability are used in wide applications such as LEDs, sensors, catalysts, and photodetectors. Different chemical, physical, and biological methods have been adopted to achieve the intended result, as enumerated in many pieces of literature. Therefore, selecting an efficient synthesis process is essential, which is a key factor that significantly influences the efficacy of the synthesized nanocrystalline materials. The chemical synthesis of nanoparticles (NPs) via hydrothermal, solvothermal, and sol-gel routes is considered effective as high-quality crystalline structures are produced. Control of parameters of processes yields excellent morphological features of the synthesized samples. This review explored the different parameters of processes and their effect on the morphology of ZnO nanostructures via hydrothermal, solvothermal, and sol-gel techniques. Finally, some ZnO nanocomposites molecules are reviewed as per the dopant used and its effect on the sample compound synthesized.
Background Various parts of Anacardium occidentale plant possess curative qualities like antidiabetic, anti-inflammatory, antibacterial, antifungal, and antioxidant. Aqueous extract of this plant leaf was used in biosynthesizing zinc oxide (ZnO) nanoaggregates using two precursors of zinc salt (zinc acetate dihydrate [Zn(CH3COO)2∙2H2O] and zinc chloride [ZnCl2]). The synthesized ZnO samples were used in a comparative study to investigate the antibacterial activity against selected Gram-positive and Gram-negative microbes [Staphylococcus aureus, Exiguobacterium aquaticum (Gram +ve) and Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii (Gram −ve)]. The synthesized ZnO nanoaggregates from the two precursors were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive x-ray spectroscopy (EDX) techniques. Results Micrographs of SEM and TEM confirmed nanoparticles agglomerated into aggregates. While spherical nanoaggregates were identified in samples prepared from Zn(CH3COO)2∙2H2O, flake-like structures were identified in samples synthesized from ZnCl2. Particle size determined by TEM was 107.03 ± 1.54 nm and 206.58 ± 1.86 nm for zinc acetate dihydrate and zinc chloride precursors respectively. ZnO nanoaggregate synthesized using zinc acetate as precursor gave higher antibacterial activity than its counterpart, zinc chloride with K. pneumonia recording the highest inhibition zone of 2.08 ± 0.03 mm (67.53%) whereas S. aureus recorded the least inhibition zone of 1.06 ± 0.14 mm (34.75%) for ZnO nanoaggregate from zinc chloride precursor. Also, antibacterial activity increases with increasing concentration of the extract in general. However, A. baumannii, E. aquaticum, and K. pneumoniae did not follow the continuity trend with regards to the 250 ppm and 500 ppm concentrations. Conclusion Biosynthesis of ZnO nanoaggregates using aqueous extract of A. occidentale leaf from zinc acetate dihydrate and zinc chloride as precursors was successful with the formation of nanospheres and nanoflakes. The study suggested that A. occidentale sp. could be an alternative source for the production of ZnO nanoparticles and are efficient antibacterial compounds against both Gram +ve and Gram −ve microbes with its promising effect against infectious bacteria.
Background Estuarine and marine water quality has remarkable importance because these water resources are used for multiple reasons for instance: transportation, tourism, recreation, and other human or economic ways to use water. The objective of the study was to assess the water quality of the coastal and estuaries of the Rambungan, Sibu, Salak, and Santubong rivers in Sarawak, Malaysia. Water samples were collected from 10 locations and analyzed by employing standard techniques. A fuzzy comprehensive evaluation, grey clustering evaluation methods, Thailand Marine Water Classification System, and the Malaysian Marine Water Quality Index (MMWQI) and its classification system were applied to compute the index of each water quality parameter. Results The results showed that all the analyzed water quality parameters were within the allowable threshold levels. The results obtained by the application of fuzzy comprehensive evaluation and grey clustering evaluation methods proved that the coastal and the estuaries waters were clean with exception of coastal location CZ9 and the estuary of Salak river which showed slight pollution. Based on the Malaysian Marine Water Quality Index, it was observed that all the locations were in the classification group of moderate (i.e. 50–79%). This suggests that the estuaries of selected rivers can be used for natural resource conservation, while the coastal regions are good for fish farming. Conclusion It can be deduced that the suggested techniques were workable and logical. The method developed and the information in this study can serve as a reference and decision support for scientists and policymakers of concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.