Peptic ulcer disease affects many people globally. With the increasing resistance to some orthodox antibiotics such as Clarithromycin and Metronidazole, it is important that new acceptable, safer and effective therapies are developed to manage this disease. Various herbal medicines have been used traditionally for the remedy of peptic ulcer disease (PUD), however scientific information with regards to their anti-peptic ulcer both in-vivo and invitro as well as clinical studies supporting their use is still inadequate. The Centre for Plant Medicine Research, (CPMR) Mampong-Akuapem, Ghana manufactures three herbal Products namely Enterica, Dyspepsia and NPK 500 capsules which are currently used for the remedy of PUD as a triple therapy at its out-patient clinic with promising effects. The aim of this review is to gather information from literature on the anti-ulcer properties, pharmacological, phytochemical constituents and related activities of herbal plants used at the CPMR for formulation of the triple herbal therapy. This review may, provide some scientific bases for the use of Enterica, Dyspepsia and NPK 500 capsules in the management of Peptic ulcer at the CPMR out-patient clinic. Methods: Organization for the review involved the on and/or offline search for information from available literature using electronic data and scientific research information resources such as PubMed, Science Direct and Google scholar. Results: In this review, fifteen ethno-medicinal plants used for the formulation of Enterica, Dyspepsia and NPK capsules have been discussed, presenting the description of the plants, composition and pharmacological activity. Interpretation: Tables with the summary of reviewed medicinal plants with their anti-ulcer models and inference on possible mechanisms of action were drawn up. The mechanism(s) of action of individual plants and products (Enterica, Dyspepsia and NPK 500 capsules) must be further investigated and established experimentally in-vitro in addition to in-vivo pharmacological and clinical activity studies to confirm their use in the remedy of PUD.
Background Various parts of Anacardium occidentale plant possess curative qualities like antidiabetic, anti-inflammatory, antibacterial, antifungal, and antioxidant. Aqueous extract of this plant leaf was used in biosynthesizing zinc oxide (ZnO) nanoaggregates using two precursors of zinc salt (zinc acetate dihydrate [Zn(CH3COO)2∙2H2O] and zinc chloride [ZnCl2]). The synthesized ZnO samples were used in a comparative study to investigate the antibacterial activity against selected Gram-positive and Gram-negative microbes [Staphylococcus aureus, Exiguobacterium aquaticum (Gram +ve) and Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii (Gram −ve)]. The synthesized ZnO nanoaggregates from the two precursors were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive x-ray spectroscopy (EDX) techniques. Results Micrographs of SEM and TEM confirmed nanoparticles agglomerated into aggregates. While spherical nanoaggregates were identified in samples prepared from Zn(CH3COO)2∙2H2O, flake-like structures were identified in samples synthesized from ZnCl2. Particle size determined by TEM was 107.03 ± 1.54 nm and 206.58 ± 1.86 nm for zinc acetate dihydrate and zinc chloride precursors respectively. ZnO nanoaggregate synthesized using zinc acetate as precursor gave higher antibacterial activity than its counterpart, zinc chloride with K. pneumonia recording the highest inhibition zone of 2.08 ± 0.03 mm (67.53%) whereas S. aureus recorded the least inhibition zone of 1.06 ± 0.14 mm (34.75%) for ZnO nanoaggregate from zinc chloride precursor. Also, antibacterial activity increases with increasing concentration of the extract in general. However, A. baumannii, E. aquaticum, and K. pneumoniae did not follow the continuity trend with regards to the 250 ppm and 500 ppm concentrations. Conclusion Biosynthesis of ZnO nanoaggregates using aqueous extract of A. occidentale leaf from zinc acetate dihydrate and zinc chloride as precursors was successful with the formation of nanospheres and nanoflakes. The study suggested that A. occidentale sp. could be an alternative source for the production of ZnO nanoparticles and are efficient antibacterial compounds against both Gram +ve and Gram −ve microbes with its promising effect against infectious bacteria.
Elimination of microorganisms from herbal products has been a major concern due to its implicated health risk to consumers. Drying of herbal materials has been employed for centuries to reduce the risk of contamination and spoilage. The present study adopted three drying approaches in an attempt to eliminate microorganisms from Lippia multiflora tea bag formulation. This study also evaluated the tea bags and optimized the extraction procedure. The L. multiflora leaves for tea bagging were air-dried and milled (A), oven-dried and milled (B), and microwaved (the milled air-dried leaves) (C). The moisture contents were determined at 105°C ± 2°C for 2 hours to constant weight. Phytochemical parameters such as phytochemical constituents, total water extractive, and pH were assessed. The microbial safety and quality of the L. multiflora tea bags were evaluated using the British Pharmacopoeia 2019 specifications. The uniformity of the mass of the formulated tea bags was also determined. Extraction from the Lippia tea bags was optimized. The results showed that using the approaches (A, B, and C) adopted for drying and processing, the moisture contents of the formulated tea bags were in the range of 9.75–10.71% w/w. All the formulated tea bags contained reducing sugars, phenolic compounds, polyuronides, flavonoids, anthracenosides, alkaloids, saponins, and phytosterols. The pH range of the formulations was 7.11–7.54, whereas the total water extractive values were in the range of 19.12–20.41% w/w. The one-way analysis of variance demonstrated no significant difference in the data obtained from the results from A, B, and C. The formulation from A was found to be unsafe for consumption due to unacceptable microbial contamination limits. Microbial load of the formulations from B and C were within the BP specifications. All the batches of the formulations passed the uniformity of mass test. An optimized extraction procedure was obtained when one tea bag was extracted in 250 mL of hot water within the specified time. L. multiflora leaves meant for tea bagging should be oven-dried or microwaved before tea bagging for safe consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.