Traditionally, query processing gets a query and a database instance as input and returns the result of the query for that particular database instance. Reverse query processing (RQP) gets a query and a result as input and returns a possible database instance that could have produced that result for that query. Rather than making a closed world assumption, RQP makes an open world assumption. There are several applications for RQP; most notably, testing database applications and debugging database applications. This paper describes the formal framework of RQP and the design of a system, called SPQR (System for Processing Queries Reversely) that implements a reverse query processor for SQL.
Many kinds of real-life data exhibit logical ordering among their data items and are thus sequential in nature. However, traditional online analytical processing (OLAP) systems and techniques were not designed for sequence data and they are incapable of supporting sequence data analysis. In this paper, we propose the concept of Sequence OLAP, or S-OLAP for short. The biggest distinction of S-OLAP from traditional OLAP is that a sequence can be characterized not only by the attributes' values of its constituting items, but also by the subsequence/substring patterns it possesses. This paper studies many aspects related to Sequence OLAP. The concepts of sequence cuboid and sequence data cube are introduced. A prototype S-OLAP system is built in order to validate the proposed concepts. The prototype is able to support "pattern-based" grouping and aggregation, which is currently not supported by any OLAP system. The implementation details of the prototype system as well as experimental results are presented.
In many applications, information is best represented as graphs. In a dynamic world, information changes and so the graphs representing the information evolve with time. We propose that historical graph-structured data be maintained for analytical processing. We call a historical evolving graph sequence an EGS. We observe that in many applications, graphs of an EGS are large and numerous, and they often exhibit much redundancy among them. We study the problem of efficient query processing on an EGS and put forward a solution framework called FVF. Through extensive experiments on both real and synthetic datasets, we show that our FVF framework is highly efficient in EGS query processing.
Regression testing is an important software maintenance activity to ensure the integrity of a software after modification. However, most methods and tools developed for software testing today do not work well for database applications; these tools only work well if applications are stateless or tests can be designed in such a way that they do not alter the state. To execute tests for database applications efficiently, the challenge is to control the state of the database during testing and to order the test runs such that expensive database reset operations that bring the database into the right state need to be executed as seldom as possible. This work devises a regression testing framework for database applications so that test runs can be executed in parallel. The goal is to achieve linear speed-up and/or exploit the available resources as well as possible. This problem is challenging because parallel testing needs to consider both load balancing and controlling the state of the database. Experimental results show that test run execution can achieve linear speed-up by using the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.