The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
Assessing conservation strategies requires reliable estimates of abundance. Because detecting all individuals is most often impossible in free-ranging populations, estimation procedures have to account for a <1 detection probability. Capture-recapture methods allow biologists to cope with this issue of detectability. Nevertheless, capture-recapture models for open populations are built on the assumption that all individuals share the same detection probability, although detection heterogeneity among individuals has led to underestimating abundance of closed populations. We developed multievent capture-recapture models for an open population and proposed an associated estimator of population size that both account for individual detection heterogeneity (IDH). We considered a two-class mixture model with weakly and highly detectable individuals to account for IDH. In a noninvasive capture-recapture study of wolves we based on genotypes identified in feces and hairs, we found a large underestimation of population size (27% on average) occurred when IDH was ignored.
Summary1. Under increasing environmental and financial constraints, ecologists are faced with making decisions about dynamic and uncertain biological systems. To do so, stochastic dynamic programming (SDP) is the most relevant tool for determining an optimal sequence of decisions over time.2. Despite an increasing number of applications in ecology, SDP still suffers from a lack of widespread understanding. The required mathematical and programming knowledge as well as the absence of introductory material provide plausible explanations for this. 3. Here, we fill this gap by explaining the main concepts of SDP and providing useful guidelines to implement this technique, including R code. 4. We illustrate each step of SDP required to derive an optimal strategy using a wildlife management problem of the French wolf population. 5. Stochastic dynamic programming is a powerful technique to make decisions in presence of uncertainty about biological stochastic systems changing through time. We hope this review will provide an entry point into the technical literature about SDP and will improve its application in ecology.
Dispersal is a fundamental process with wide-ranging evolutionary and management consequences. To date, natal dispersal has never been described for the polygynous-promiscuous European hare Lepus europaeus. Using telemetry, we investigated the natal dispersal pattern in two zones that differed in hunting pressure and hare density. We quantified both the natal dispersal rates and distances using 84 juvenile hares. We tested for the influence of several factors (age, sex, density and period of the year) on these two variables. Overall, the mean dispersal rate was 43% and the median natal dispersal distances were 209 m for philopatric hares and 1615 m for dispersers. The maximum distance moved was 17.35 km. Natal dispersal rates were higher in the hunting zone with less density for both males and females, but males dispersed more frequently than females in the two zones although females moved over longer distances. Natal dispersal occurred preferentially between 4 and 6 months of age. This very fine description of the natal dispersal pattern allowed us to make inferences about both the evolutionary and proximate causes of natal dispersal. We also advocate that more attention should be paid to dispersal in studies on hare dynamics and on the conception of hare management, because dispersal seems to be more common than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.