Multiple sclerosis (MS) is an immune-mediated disease, the etiology of which involves both genetic and environmental factors. The exact nature of the environmental factors responsible for predisposition to MS remains elusive; however, it’s hypothesized that gastrointestinal microbiota might play an important role in pathogenesis of MS. Therefore, this study was designed to investigate whether gut microbiota are altered in MS by comparing the fecal microbiota in relapsing remitting MS (RRMS) (n = 31) patients to that of age- and gender-matched healthy controls (n = 36). Phylotype profiles of the gut microbial populations were generated using hypervariable tag sequencing of the V3–V5 region of the 16S ribosomal RNA gene. Detailed fecal microbiome analyses revealed that MS patients had distinct microbial community profile compared to healthy controls. We observed an increased abundance of Psuedomonas, Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients, whereas control group showed increased abundance of Parabacteroides, Adlercreutzia and Prevotella genera. Thus our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and further study is needed to better understand their role in the etiopathogenesis of MS.
BackgroundThe adaptive immune response in rheumatoid arthritis (RA) is influenced by an interaction between host genetics and environment, particularly the host microbiome. Association of the gut microbiota with various diseases has been reported, though the specific components of the microbiota that affect the host response leading to disease remain unknown. However, there is limited information on the role of gut microbiota in RA. In this study we aimed to define a microbial and metabolite profile that could predict disease status. In addition, we aimed to generate a humanized model of arthritis to confirm the RA-associated microbe.MethodsTo identify an RA biomarker profile, the 16S ribosomal DNA of fecal samples from RA patients, first-degree relatives (to rule out environment/background as confounding factors), and random healthy non-RA controls were sequenced. Analysis of metabolites and their association with specific taxa was performed to investigate a potential mechanistic link. The role of an RA-associated microbe was confirmed using a human epithelial cell line and a humanized mouse model of arthritis.ResultsPatients with RA exhibited decreased gut microbial diversity compared with controls, which correlated with disease duration and autoantibody levels. A taxon-level analysis suggested an expansion of rare taxa, Actinobacteria, with a decrease in abundant taxa in patients with RA compared with controls. Prediction models based on the random forests algorithm suggested that three genera, Collinsella, Eggerthella, and Faecalibacterium, segregated with RA. The abundance of Collinsella correlated strongly with high levels of alpha-aminoadipic acid and asparagine as well as production of the proinflammatory cytokine IL-17A. A role for Collinsella in altering gut permeability and disease severity was confirmed in experimental arthritis.ConclusionsThese observations suggest dysbiosis in RA patients resulting from the abundance of certain rare bacterial lineages. A correlation between the intestinal microbiota and metabolic signatures could determine a predictive profile for disease causation and progression.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0299-7) contains supplementary material, which is available to authorized users.
Background & Aims Patients with diarrhea-predominant irritable bowel syndrome (IBS-D) could benefit from a gluten-free diet (GFD). Methods We performed a randomized controlled 4-week trial of a gluten-containing diet (GCD) or GFD in 45 patients with IBS-D; genotype analysis was performed for HLA-DQ2 and HLA-DQ8. Twenty-two patients were placed on the GCD (11 HLA-DQ2/8–negative and 11 HLA-DQ2/8–positive) and 23 on the GFD (12 HLA-DQ2/8−negative and 11 HLA-DQ2/8–positive. We measured bowel function daily, small bowel (SB) and colonic transit, mucosal permeability (by lactulose and mannitol excretion), and cytokine production by peripheral blood mononuclear cells (PBMCs) following exposure to gluten and rice. We collected rectosigmoid biopsies from 28 patients, analyzed levels of mRNAs encoding tight junction proteins, and performed hematoxylin and eosin staining and immunohistochemical analyses. Analysis of covariance models was used to compare data from the GCD and GFD groups. Results Subjects on the GCD had more bowel movements/day (P=.04); the GCD had a greater effect on bowel movements/day of HLA-DQ2/8–positive than −negative patients (P=.019). The GCD was associated with higher SB permeability (based on 0–2 hr levels of mannitol and lactulose:mannitol ratio); SB permeability was greater in HLA-DQ2/8–positive than −negative patients (P=.018). No significant differences in colonic permeability were observed. Patients on the GCD had a small decrease in expression of ZO-1 in SB mucosa and significant decreases in expression of ZO-1, claudin-1, and occludin in rectosigmoid mucosa; the effects of the GCD on expression were significantly greater in HLA-DQ2/8–positive patients. GCD vs GFD had no significant effects on transit or histology. PBMCs produced higher levels of interleukin-10, granulocyte colony-stimulating factor, and transforming growth factor-a in response to gluten than rice (unrelated to HLA genotype). Conclusion Gluten alters bowel barrier functions in patients with IBS-D, particularly in HLA-DQ2/8–positive patients. These findings reveal a reversible mechanism for the disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.