Preclinical studies of viral vector-based HIV-1 vaccine candidates have previously shown partial protection against stringent virus challenges in rhesus monkeys. In this study, we evaluated the protective efficacy of adenovirus serotype 26 (Ad26) vector priming followed by boosting with a purified envelope (Env) glycoprotein. Rhesus monkeys primed with Ad26 vectors expressing SIVsmE543 Env/Gag/Pol antigens and boosted with AS01B-adjuvanted SIVmac32H Env gp140 demonstrated complete protection in 50% of vaccinated animals against a series of repetitive, heterologous, intrarectal SIVmac251 challenges that infected all controls. Protective efficacy correlated with the functionality of Env-specific antibody responses. Comparable protection was also observed with a similar Ad/Env vaccine against repetitive, heterologous, intrarectal SHIV-SF162P3 challenges. These data demonstrate robust protection by Ad/Env vaccines against acquisition of stringent virus challenges in rhesus monkeys.
Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.
In vivo, the activity of antibodies relies critically on properties of both the variable domain, responsible for antigen recognition, and the constant domain, responsible for innate immune recognition. Here, we describe a flexible, microsphere-based array format for capturing information about both functional ends of disease-specific antibodies from complex, polyclonal clinical serum samples. Using minimal serum, we demonstrate IgG subclass profiling of multiple antibody specificities. We further capture and determine the subclass of epitope-specific antibodies. The data generated in this array provides a profile of the humoral immune response with multi-dimensional metrics regarding properties of both variable and constant IgG domains. Significantly, these properties are assessed simultaneously, and therefore information about the relationship between variable and constant domain characteristics is captured, and can be used to predict functions such as antibody effector activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.