Reasoning about object affordances allows an autonomous agent to perform generalised manipulation tasks among object instances. While current approaches to grasp affordance estimation are effective, they are limited to a single hypothesis. We present an approach for detection and extraction of multiple grasp affordances on an object via visual input. We define semantics as a combination of multiple attributes, which yields benefits in terms of generalisation for grasp affordance prediction. We use Markov Logic Networks to build a knowledge base graph representation to obtain a probability distribution of grasp affordances for an object. To harvest the knowledge base, we collect and make available a novel dataset that relates different semantic attributes. We achieve reliable mappings of the predicted grasp affordances on the object by learning prototypical grasping patches from several examples. We show our method's generalisation capabilities on grasp affordance prediction for novel instances and compare with similar methods in the literature. Moreover, using a robotic platform, on simulated and real scenarios, we evaluate the success of the grasping task when conditioned on the grasp affordance prediction.
In real-world robotics, motion planning remains to be an open challenge. Not only robotic systems are required to move through unexplored environments, but also their manoeuvrability is constrained by their dynamics and often suffer from uncertainty. One approach to overcome this problem is to incrementally map the surroundings while, simultaneously, planning a safe and feasible path to a desired goal. This is especially critical in underwater environments, where autonomous vehicles must deal with both motion and environment uncertainties. In order to cope with these constraints, this work proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safetyguarantees. The proposed approach deals with the motion, probabilistic safety, and online computation constraints by (i) incrementally representing the environment as a collection of local maps, and (ii) iteratively (re)planning kinodynamicallyfeasible and probabilistically-safe paths to goal. The proposed framework is evaluated on the Sparus II, a nonholonomic torpedo-shaped AUV, by conducting simulated and real-world trials, thus proving the efficacy of the method and its suitability even for systems with limited on-board computational power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.