Recent advances in Internet of Things (IoT) have enabled myriad domains such as smart homes, personal monitoring devices, and enhanced manufacturing. IoT is now pervasive-new applications are being used in nearly every conceivable environment, which leads to the adoption of device-based interaction and automation. However, IoT has also raised issues about the security and privacy of these digitally augmented spaces. Program analysis is crucial in identifying those issues, yet the application and scope of program analysis in IoT remains largely unexplored by the technical community. In this article, we study privacy and security issues in IoT that require program-analysis techniques with an emphasis on identified attacks against these systems and defenses implemented so far. Based on a study of five IoT programming platforms, we identify the key insights that result from research efforts in both the program analysis and security communities and relate the efficacy of program-analysis techniques to security and privacy issues. We conclude by studying recent IoT analysis systems and exploring their implementations. Through these explorations, we highlight key challenges and opportunities in calibrating for the environments in which IoT systems will be used. CCS Concepts: • Security and privacy → Software and application security; • Software and its engineering → Automated static analysis; Dynamic analysis;
Millions of consumers depend on smart camera systems to remotely monitor their homes and businesses. However, the architecture and design of popular commercial systems require users to relinquish control of their data to untrusted third parties, such as service providers (e.g., the cloud). Third parties therefore can (and in some instances have) access the video footage without the users’ knowledge or consent—violating the core tenet of user privacy. In this paper, we present CaCTUs, a privacy-preserving smart Camera system Controlled Totally by Users. CaCTUs returns control to the user; the root of trust begins with the user and is maintained through a series of cryptographic protocols, designed to support popular features, such as sharing, deleting, and viewing videos live. We show that the system can support live streaming with a latency of 2 s at a frame rate of 10 fps and a resolution of 480 p. In so doing, we demonstrate that it is feasible to implement a performant smart-camera system that leverages the convenience of a cloud-based model while retaining the ability to control access to (private) data.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.