We propose a point process model of spiking activity from auditory neurons. The model takes account of the neuron’s intrinsic dynamics as well as the spectro-temporal properties of an input stimulus. A discrete Volterra expansion is used to derive the form of the conditional intensity function. The Volterra expansion models the neuron’s baseline spike rate, its intrinsic dynamics - spiking history - and the stimulus effect which in this case is the analog of the spectro-temporal receptive field (STRF). We performed the model fitting efficiently in a generalized linear model framework using ridge regression to address properly this ill-posed maximum likelihood estimation problem. The model provides an excellent fit to spiking activity from 55 auditory nerve neurons. The STRF-like representation estimated jointly with the neuron’s intrinsic dynamics may offer more accurate characterizations of neural activity in the auditory system than current ones based solely on the STRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.