In this paper, a single-channel speech enhancement method based on Bayesian decision and spectral amplitude estimation is proposed, in which the speech detection module and spectral amplitude estimation module are included, and the two modules are strongly coupled. First, under the decisions of speech presence and speech absence, the optimal speech amplitude estimators are obtained by minimizing a combined Bayesian risk function, respectively. Second, using the obtained spectral amplitude estimators, the optimal speech detector is achieved by further minimizing the combined Bayesian risk function. Finally, according to the detection results of speech detector, the optimal decision rule is made and the optimal spectral amplitude estimator is chosen for enhancing noisy speech. Furthermore, by considering both detection and estimation errors, we propose a combined cost function which incorporates two general weighted distortion measures for the speech presence and speech absence of the spectral amplitudes, respectively. The cost parameters in the cost function are employed to balance the speech distortion and residual noise caused by missed detection and false alarm, respectively. In addition, we propose two adaptive calculation methods for the perceptual weighted order p and the spectral amplitude order β concerned in the proposed cost function, respectively. The objective and subjective test results indicate that the proposed method can achieve a more significant segmental signal-noise ratio (SNR) improvement, a lower log-spectral distortion, and a better speech quality than the reference methods.