Abstract:Flow dynamics within a peatland are governed by hydraulic parameters such as hydraulic conductivity, dispersivity and specific yield, as well as by anisotropy and heterogeneity. The aim of this study is to investigate hydraulic parameters variability in peat through the use of different field and laboratory methods. An experimental site located in the Lanoraie peatland complex (southern Quebec, Canada) was used to test the different approaches. Slug and bail tests were performed in piezometer standpipes to investigate catotelm hydraulic conductivity. Combined Darcy tests and tracer experiments were conducted on cubic samples using the modified cube method (MCM) to assess catotelm hydraulic conductivity, anisotropy and dispersivity. A new laboratory method is proposed for assessing acrotelm hydraulic conductivity and gravity drainage using a laboratory experimental tank. Most of slug tests' recovery curves were characteristic of compressible media, and important variability was observed depending on the initial head difference. The Darcy experiments on cubic samples provided reproducible results, and anisotropy (K h > K v ) was observed for most of samples. All tracer experiments displayed asymmetrical breakthrough curves, suggesting the presence of retardation and/or dual porosity. Hydraulic conductivity estimates performed using the experimental tank showed K variations over a factor of 44 within the upper 40 cm of the acrotelm. The results demonstrate that the intrinsic variability associated with the different field and laboratory methods is small compared with the spatial variability of hydraulic parameters. It is suggested that a comprehensive assessment of peat hydrological properties can be obtained through the combined use of complementary field and laboratory investigations.
Ground penetrating radar (GPR) is often used for investigating peat thickness. The quality of GPR measurements depends on electromagnetic wave (EMW) velocity estimates. The objective of this study is to determine the number of manual measurements required to minimize EMW velocity error in peatlands. A total of 175 manually measured peat thicknesses are used with a depthto-target method to assess EMW velocity in two southern Quebec peatlands. Mean measured EMW velocities are 0·040 and 0·039 m ns -1 with standard deviations of 0·013 and 0·008 m ns -1 . Statistical analyses show that at least 30 calibration points are required to minimize the EMW velocity error, regardless of the geological setting. Figure 1. Study sites of (a) the Lanoraie peatland complex and (b) the Covey Hill peatland, southern Quebec (Canada).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.