Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Prostate cancer is the most common nonskin neoplasm and second leading cause of death in men. 6-Shogaol (6-SHO), a potent bioactive compound in ginger (Zingiber officinale Roscoe), has been shown to possess anti-inflammatory and anticancer activity. In the present study, the effect of 6-SHO on the growth of prostate cancer cells was investigated. 6-SHO effectively reduced survival and induced apoptosis of cultured human (LNCaP, DU145, and PC3) and mouse (HMVP2) prostate cancer cells. Mechanistic studies revealed that 6-SHO reduced constitutive and interleukin (IL)-6-induced STAT3 activation and inhibited both constitutive and TNF-a-induced NF-kB activity in these cells. In addition, 6-SHO decreased the level of several STAT3 and NF-kB-regulated target genes at the protein level, including cyclin D1, survivin, and cMyc and modulated mRNA levels of chemokine, cytokine, cell cycle, and apoptosis regulatory genes (IL-7, CCL5, BAX, BCL2, p21, and p27). 6-SHO was more effective than two other compounds found in ginger, 6-gingerol, and 6-paradol at reducing survival of prostate cancer cells and reducing STAT3 and NF-kB signaling. 6-SHO also showed significant tumor growth inhibitory activity in an allograft model using HMVP2 cells. Overall, the current results suggest that 6-SHO may have potential as a chemopreventive and/or therapeutic agent for prostate cancer and that further study of this compound is warranted. Cancer Prev Res; 7(6); 627-38. Ó2014 AACR.
Reversible addition/fragmentation chain-transfer polymerization is used to generate a calix[4]pyrrole methacrylate-derived copolymer. The material is found to undergo supramolecular cross-linking upon exposure to select dianionic species (e.g., pyrophosphate and terephthalate salts), altering the viscoelastic properties of the copolymer in solution and in the solid state. The copolymeric material is also used for selective differentiation of mono- and bis-anions under conditions of liquid/liquid extraction.
Polymerization-induced microphase separation has been used to prepare solid cross-linked monoliths containing bicontinuous and nanostructured polymer domains. We use this process to fabricate a monolith containing either a negatively or positively charged polyelectrolyte domain inside of the neutral styrene/divinylbenzene-derived matrix. First, the materials are made with a neutral pre-ionic polymer containing masked charged groups. The monoliths are then functionalized to a charged state by treatment with trimethylamine; small-angle X-ray scattering shows no significant morphological change in the microphase-separated structure upon postpolymerization modification. By exchanging dyes with the counterions in the material, we corroborated the continuity of the charged domains. Using ion-exchange capacity measurements, we estimate the number of accessible charges within the material based on macro-chain transfer agent molar mass and loading.
This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions.
Block polymer systems containing spatially separated positive and negative charges are desirable for a number of applications, including biomedical devices, membrane separations, and coatings. Unfortunately, the tendency of positive and negative block polymers to charge cancel and form an insoluble coacervate precipitate leads to processing difficulties in the fabrication of charged thin films. We use postpolymerization modifications to simultaneously add both negative and positive charges to self-assembled neutral ABC triblock polymer thin films. Using reversible addition–fragmentation chain transfer polymerization, we synthesized triblock terpolymers consisting of poly(n-propyl styrene sulfonic ester), poly(4-chlorostyrene), and poly(vinylbenzyl chloride). The chemical functionalization of both charged blocks was accomplished simultaneously through exposure to gaseous trimethylamine in a single step at room temperature, simplifying the synthetic procedure and preserving the microstructure of the thin film. The quantitative functionalization was tracked through attenuated total reflectance infrared spectroscopy, and the thin film morphology was evaluated using intermodulation atomic force microscopy, transmission electron microscopy, and grazing-incidence small-angle X-ray scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.