In Xenopus, Wnt signals and their transcriptional effector -catenin are required for the development of dorsal axial structures. In zebrafish, previous loss-of-function studies have not identified an essential role for -catenin in dorsal axis formation, but the maternal-effect mutation ichabod disrupts -catenin accumulation in dorsal nuclei and leads to a reduction of dorsoanterior derivatives. We have identified and characterized a second zebrafish -catenin gene, -catenin-2, located on a different linkage group from the previously studied -catenin-1, but situated close to the ichabod mutation on LG19. Although the ichabod mutation does not functionally alter the -catenin-2 reading frame, the level of maternal -catenin-2, but not -catenin-1, transcript is substantially lower in ichabod, compared with wild-type, embryos. Reduction of -catenin-2 function in wild-type embryos by injection of morpholino antisense oligonucleotides (MOs) specific for this gene (MO2) results in the same ventralized phenotypes as seen in ichabod embryos, and administration of MO2 to ichabod embryos increases the extent of ventralization. MOs directed against -catenin-1 (MO1), by contrast, had no ventralizing effect on wild-type embryos. -catenin-2 is thus specifically required for organizer formation and this function is apparently required maternally, because the ichabod mutation causes a reduction in maternal transcription of the gene and a reduced level of -catenin-2 protein in the early embryo. A redundant role of -catenins in suppressing formation of neurectoderm is revealed when both -catenin genes are inhibited. Using a combination of MO1 and MO2 in wild-type embryos, or by injecting solely MO1 in ichabod embryos, we obtain expression of a wide spectrum of neural markers in apparently appropriate anteroposterior pattern. We propose that the early, dorsal-promoting function of -catenin-2 is essential to counteract a later, dorsal-and neurectoderm-repressing function that is shared by both -catenin genes.
Vascular endothelial growth factor (VEGF, VEGF-A), a selective mitogen for endothelial cells is a critical factor for vascular development. Two isoforms that differ in the presence of exons 6 and 7, Vegf(165) and Vegf(121), are the dominant forms expressed in zebrafish embryo. Simultaneous overexpression of both isoforms in the embryo results in increased production of flk1, tie1, scl, and gata1 transcripts, indicating a stimulation of both endothelial and hematopoietic lineages. We also demonstrate that vegf can stimulate hematopoiesis in zebrafish by promoting the formation of terminally differentiated red blood cells. Simultaneous overexpression of both isoforms also causes ectopic vasculature and blood cells in many of the injected embryos as well as pericardial edema in later stage embryos. Overexpression of vegf also resulted in earlier onset of flk1, tie1, scl, and gata1 expression in the embryo, indicating a possible role of vegf in stimulating the differentiation of both vascular and hematopoietic lineages. Co-injection of RNAs for both isoforms results in increased expression of three of these markers over and above that observed when either RNA is singly injected and analysis of vegf expression in the notochord mutants no tail and floating head suggests that the notochord patterns the formation of the dorsal aorta by stimulating adjacent somite cells to express vegf, which in turn functions as a signal in dorsal aorta patterning. Finally, studies of vegf expression in cloche mutant indicate that vegf expression is generally independent of cloche function. These results show that in the zebrafish embryo, vegf can not only stimulate endothelial cell differentiation but also hematopoiesis. Moreover, these effects are most dramatic when both vegf isoforms are co-expressed, indicating a synergistic effect of the expression of the two forms of the VEGF protein.
A central question in the development of multicellular organisms pertains to the timing and mechanisms of specification of the embryonic axes. In many organisms, specification of the dorsoventral axis requires signalling by proteins of the Transforming growth factor-beta and Wnt families. Here we show that maternal transcripts of the zebrafish Nodal-related morphogen, Squint (Sqt), can localize to two blastomeres at the four-cell stage and predict the dorsal axis. Removal of cells containing sqt transcripts from four-to-eight-cell embryos or injection of antisense morpholino oligonucleotides targeting sqt into oocytes can cause a loss of dorsal structures. Localization of sqt transcripts is independent of maternal Wnt pathway function and requires a highly conserved sequence in the 3' untranslated region. Thus, the dorsoventral axis is apparent by early cleavage stages and may require the maternally encoded morphogen Sqt and its associated factors. Because the 3' untranslated region of the human nodal gene can also localize exogenous sequences to dorsal cells, this mechanism may be evolutionarily conserved.
Fibroblast growth factors (FGFs) are secreted molecules that can activate the RAS/mitogen-activated protein kinase (MAPK) pathway to serve crucial functions during embryogenesis. Through an in situ hybridization screen for genes with restricted expression patterns during early zebrafish development,we identified a group of genes that exhibit similar expression patterns to FGF genes. We report the characterization of zebrafish MAP kinase phosphatase 3(MKP3; DUSP6 - Zebrafish Information Network), a member of the FGF synexpression group, showing that it has a crucial role in the specification of axial polarity in the early zebrafish embryo. MKP3 dephosphorylates the activated form of MAPK, inhibiting the RAS/MAPK arm of the FGF signaling pathway. Gain- and loss-of-function studies reveal that MKP3 is required to limit the extent of FGF/RAS/MAPK signaling in the early embryo, and that disturbing this inhibitory pathway disrupts dorsoventral patterning at the onset of gastrulation. The earliest mkp3 expression is restricted to the future dorsal region of the embryo where it is initiated by a maternalβ-catenin signal, but soon after its initiation, mkp3 expression comes under the control of FGF signaling. Thus, mkp3 encodes a feedback attenuator of the FGF pathway, the expression of which is initiated at an early stage so as to ensure correct FGF signaling levels at the time of axial patterning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.