The objective of this study was to develop a patient-specific computational model to quantify the biomechanical interaction between the transcatheter aortic valve (TAV) stent and the stenotic aortic valve during TAV intervention. Finite element models of a patient-specific stenotic aortic valve were reconstructed from multi-slice computed tomography (MSCT) scans, and TAV stent deployment into the aortic root was simulated. Three initial aortic root geometries of this patient were analyzed: (a) aortic root geometry directly reconstructed from MSCT scans, (b) aortic root geometry at the rapid right ventricle pacing phase, and (c) aortic root geometry with surrounding myocardial tissue. The simulation results demonstrated that stress, strain, and contact forces of the aortic root model directly reconstructed from MSCT scans were significantly lower than those of the model at the rapid ventricular pacing phase. Moreover, the presence of surrounding myocardium slightly increased the mechanical responses. Peak stresses and strains were observed around the calcified regions in the leaflets, suggesting the calcified leaflets helped secure the stent in position. In addition, these elevated stresses induced during TAV stent deployment indicated a possibility of tissue tearing and breakdown of calcium deposits, which might lead to an increased risk of stroke. The potential of paravalvular leak and occlusion of coronary ostia can be evaluated from simulated post-deployment aortic root geometries. The developed computational models could be a valuable tool for pre-operative planning of TAV intervention and facilitate next generation TAV device design.
Successful transcatheter aortic valve (TAV) deployment and function are heavily reliant on the implant-host tissue interaction. Many adverse events observed clinically in TAV procedures such as impairment of coronary artery flow, paravalvular leak, and access site injury could be attributed to improper TAV deployment and interaction with the aortic root. In this study, we performed a computational analysis of the TAV-aortic root interaction, particularly the hemodynamics before and after TAV deployment. Utilizing a recently developed computational TAV model, we simulated the deployment of this TAV into a 68 year old male patient. The geometry of the patient's aortic valve and root were extracted from clinical CT images. From the simulation results, we obtained a peak transvalvular pressure drop of 78.45 and 25.27 mmHg before and after the TAV deployment, respectively. The mean systolic ejection transvalvular pressure reduced from 45.8 to 7.55 mmHg and effective orifice area (EOA) increased from 0.53 to 1.595 cm 2 following the TAV intervention. The altered flow pattern following TAV intervention resulted in a significant pressure drop in the vicinity of the sinuses of Valsalva, and a corresponding decrease in percentage of cardiac output reaching the coronary arteries from 5.14 to 4.07% from pre-to post-TAV deployment. In conclusion, the developed computational models allow for a quantitative analysis of the hemodynamics before and after TAV intervention, and thus could be an enabling tool for patient screening and TAV design improvement.
Success of the deployment and function in transcatheter aortic valve replacement (TAVR) is heavily reliant on the tissue-stent interaction. The present study quantified important tissue-stent contact variables of self-expanding transcatheter aortic valve (TAV) stents when deployed into ovine and porcine aortic roots, such as the stent radial expansion force, stent pullout force, the annulus deformation response and the coefficient of friction on the tissue-stent contact interface. Braided Nitinol stents were developed, tested to determine stent crimped diameter vs. stent radial force from a stent crimp experiment, and deployed in vitro to quantify stent pullout, aortic annulus deformation, and the coefficient of friction between the stent and the aortic tissue from an aortic root-stent interaction experiment. The results indicated that when crimped at body temperature from 26 mm to 19, 21 and 23 mm stent radial forces were approximately 30-40% higher than those crimped at room temperature. Coefficients of friction leveled to approximately 0.10 ± 0.01 as stent wire diameter increased and annulus size decreased from 23 to 19 mm. Regardless of aortic annulus size and species tested, it appeared that a minimum of about 2.5 mm in annular dilatation, caused by about 60N of radial force from stent expansion, was needed to anchor the stent against a pullout into the left ventricle. The study of the contact biomechanics in animal aortic tissues may help us better understand characteristics of tissue-stent interactions and quantify the baseline responses of non-calcified aortic tissues.
Clinical use of transcatheter aortic valves (TAVs) has been associated with abnormal deployment, including oval deployment and under-expansion when placed into calcified aortic annuli. In this study, we performed an integrated computational and experimental investigation to quantify the impact of abnormal deployment at the aortic annulus on TAV hemodynamics. A size 23 mm generic TAV computational model, developed and published previously, was subjected to elliptical deployment at the annulus with eccentricity levels up to 0.68 and to under-expansion of the TAV at the annulus by up to 25%. The hemodynamic performance was quantified for each TAV deployment configuration. TAV opening geometries were fabricated using stereolithography and then subjected to steady forward flow testing in accordance with ISO-5840. Centerline pressure profiles were compared to validate the computational model. Our findings show that slight ellipticity of the TAV may not lead to degeneration of hydrodynamic performance. However, under large ellipticity, increases in transvalvular pressure gradients were observed. Under-expanded deployment has a much greater negative effect on the TAV hemodynamics compared with elliptical deployment. The maximum turbulent viscous shear stress (TVSS) values were found to be significantly larger in under-expanded TAVs. Although the maximum value of TVSS was not large enough to cause hemolysis in all cases, it may cause platelets activation, especially for under-expanded deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.