Success of the deployment and function in transcatheter aortic valve replacement (TAVR) is heavily reliant on the tissue-stent interaction. The present study quantified important tissue-stent contact variables of self-expanding transcatheter aortic valve (TAV) stents when deployed into ovine and porcine aortic roots, such as the stent radial expansion force, stent pullout force, the annulus deformation response and the coefficient of friction on the tissue-stent contact interface. Braided Nitinol stents were developed, tested to determine stent crimped diameter vs. stent radial force from a stent crimp experiment, and deployed in vitro to quantify stent pullout, aortic annulus deformation, and the coefficient of friction between the stent and the aortic tissue from an aortic root-stent interaction experiment. The results indicated that when crimped at body temperature from 26 mm to 19, 21 and 23 mm stent radial forces were approximately 30-40% higher than those crimped at room temperature. Coefficients of friction leveled to approximately 0.10 ± 0.01 as stent wire diameter increased and annulus size decreased from 23 to 19 mm. Regardless of aortic annulus size and species tested, it appeared that a minimum of about 2.5 mm in annular dilatation, caused by about 60N of radial force from stent expansion, was needed to anchor the stent against a pullout into the left ventricle. The study of the contact biomechanics in animal aortic tissues may help us better understand characteristics of tissue-stent interactions and quantify the baseline responses of non-calcified aortic tissues.
An experimental and analytical approach were performed to study the biomechanics of a self-expanding, nitinol transcatheter aortic valve (TAV) stent device deployed in porcine heart tissue. The radial force, pullout force, and coefficient of friction (COF) were quantified, and the interacting device tissue response was investigated. The preliminary data generated from this study may provide a useful measure for determining an adequate valve oversize in aiding against device migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.