The conversion of ice to water is a process riddled with enigmas. We tested the possibility that ice does not transition directly to water, but first to an intermediate phase that has been recently identified. That intermediate is the interfacial "exclusion zone" phase. The phase is characterized by strong absorption of light at 270 nm. We found indeed that as ice melts, a transient 270-nm absorption phase occurs, which eventually gives way to bulk water containing no such absorption peak. Hence, the results support the hypothesis.
Background: The gut visceral musculature plays essential roles in not only moving substances through the lumen but also maintaining the function and physiology of the gut. Although the development of the visceral musculature has been studied in multiple model organisms, how it degenerates is poorly understood.Results: Here, we employ the Drosophila midgut as a model to demonstrate that the visceral musculature is disrupted by intrinsic and extrinsic factors, such as aging, feeding, chemical-induced tissue damage, and oncogenic transformation in the epithelium. Notably, we define four prominent visceral musculature disruption phenotypes, which we refer as "sprout," "discontinuity," "furcation," and "crossover" of the longitudinal muscle. Given that the occurrence of these phenotypes is increased during aging and under various stresses, we propose that these phenotypes can be used as quantitative readouts of deterioration of the visceral musculature. Intriguingly, administration of a tissuedamaging chemical dextran sulfate sodium (DSS) induced similar visceral musculature disruption phenotypes in zebrafish larvae, indicating that ingestion of a tissue-damaging chemical can disrupt the visceral musculature in a vertebrate as well.Conclusions: Our study provides insights into the deterioration of the gut visceral musculature and lays a groundwork for investigating the underlying mechanisms in Drosophila as well as other animals.
The gut visceral musculature plays essential roles in not only moving substances through the lumen but also maintaining the function and physiology of the gut. Although the development of the visceral musculature has been studied in multiple model organisms, how it degenerates is poorly understood. Here, we employ the Drosophila midgut as a model to demonstrate that the visceral musculature is disrupted by intrinsic and extrinsic factors, such as aging, feeding, chemical-induced tissue damage, and oncogenic transformation in the epithelium. Notably, we define four prominent visceral musculature disruption phenotypes, which we refer as ′sprout′, ′discontinuity′, ′furcation′, and ′crossover′ of the longitudinal muscle. Given that the occurrence of these phenotypes is increased during aging and under various stresses, we propose that these phenotypes can be used as quantitative readouts of deterioration of the visceral musculature. Intriguingly, administration of a tissue-damaging chemical dextran sulfate sodium (DSS) induced similar visceral musculature disruption phenotypes in zebrafish larvae, indicating that ingestion of a tissue-damaging chemical can disrupt the visceral musculature in a vertebrate as well. Our study provides insights into the deterioration of the gut visceral musculature and lays a groundwork for investigating the underlying mechanisms in Drosophila as well as other animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.