Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.
We describe a new species of toad from the Great Basin region of northern Nevada belonging to the Bufo (Anaxyrus) boreas species complex. This cryptic species was detected through genetic analyses of toad populations sampled throughout the Great Basin and the morphological evidence was quantified through extensive sampling of live toads within the region. The new species has the smallest body size in the species complex, and can be further diagnosed from other species in the complex by its large tibial glands and unique coloration. The known distribution of the new species is restricted to an area less than 6 km2 in Dixie Valley, Churchill Co., Nevada. The Great Basin is an arid region where aquatic resources are both rare and widely scattered, making habitat suitable for anuran populations highly vulnerable to anthropogenic change. The habitat occupied by this newly described species is threatened by the incipient installation of geothermal and solar power development projects that require the water that defines its habitat.
The four species that comprise the Bufo boreas group of toads are critically imperiled in all or portions of their geographical ranges. We present data from 16 microsatellite loci isolated from B. boreas that cross‐amplify in these four species. These markers have proven useful in the analyses of population structure and conservation genetics, and provide a powerful tool for future researchers who seek to understand the conservation genetics of these rare toad species. Polymorphism was assessed for 339 individuals from seven populations representing the four species. All loci were polymorphic (X̄ = 8, range of four to 19 alleles). Three loci were not in Hardy–Weinberg equilibrium (HWE) in one population, and one of these loci was out of HWE in a second population (P < 0.003 after Bonferroni correction for multiple tests). However, there were no systematic deviations from HWE across all study populations. Small populations in fragmented habitat appear to explain the existing HWE deviations.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.