The differentiation of stem cells into smooth muscle cells (SMCs) plays an important role in vascular development and remodeling. In addition, stem cells represent a potential source of SMCs for regenerative medicine applications such as constructing vascular grafts. Previous studies have suggested that various biochemical factors, including transforming growth factor-β (TGF-β) and the Notch pathway, may play important roles in vascular differentiation. However, the interactions of these two signaling pathways in the differentiation of bone marrow mesenchymal stem cells (MSCs) have not been clearly defined. In this study, we profiled the gene expression in MSCs in response to TGF-β, and showed that TGF-β induced Notch ligand Jagged 1 (JAG1) and SMC markers, including smooth muscle α-actin (ACTA2), calponin 1 (CNN1), and myocardin (MYOCD), which were dependent on the activation of SMAD3 and Rho kinase. In addition, knocking down JAG1 expression partially blocked ACTA2 and CNN1 expression and completely blocked MYOCD expression, suggesting that JAG1 plays an important role in TGF-β-induced expression of SMC markers. On the other hand, the activation of Notch signaling induced the expression of SMC markers in MSCs and human embryonic stem cells (hESCs). Notch activation in hESCs also resulted in an increase of neural markers and a decrease of endothelial markers. These results suggest that Notch signaling mediates TGF-β regulation of MSC differentiation and that Notch signaling induces the differentiation of MSCs and hESCs into SMCs, which represents a novel mechanism involved in stem cell differentiation.
Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.
Immune checkpoint inhibitor (ICI) therapies are now first-line therapy for many advanced malignancies in adults, with emerging use in children. With increasing ICI use, prompt recognition and optimal management of ICI-associated immune-related adverse events (IRAEs) are critical. Nearly 60% of ICI-treated adults develop IRAEs, which commonly manifest as autoimmune skin, gastrointestinal, and endocrine disease and can be life-threatening. The incidence, presentation, and disease course of spontaneous autoimmune diseases differ between adults and children, but the pattern of pediatric IRAEs is currently unclear. We report a case of a pediatric patient presenting with new onset autoimmune diabetes mellitus and diabetic ketoacidosis during ICI treatment of fibrolamellar hepatocellular carcinoma (FLC). Distinct from spontaneous type 1 diabetes mellitus (T1DM), this patient progressed rapidly and was negative for known β cell autoantibodies. Additionally, the patient was positive for 21-hydroxylase autoantibodies, suggesting development of concomitant adrenal autoimmunity. Current guidelines for the management of IRAEs in adults may not be appropriate for the management of pediatric patients, who may have different autoimmune risks in a developmental context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.