The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source—peripheral blood—has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34+ cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming virus (SFFV) long terminal repeat (LTR) promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4)-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs) into pluripotency, yet at a very low efficiency. We found that inclusion of BCL-XL increases the reprogramming efficiency by approximately 10-fold. Furthermore, culture of CD3−/CD19− cells or T/B cell-depleted MNCs for 4–6 days led to the generation of 20–30 iPSC colonies from 1 ml PB, an efficiency that is substantially higher than previously reported. PB iPSCs express pluripotency markers, form teratomas, and can be induced to differentiate in vitro into mesenchymal stem cells, cardiomyocytes, and hepatocytes. Used together, our optimized factor combination and reprogramming strategy lead to efficient generation of integration-free iPSCs from adult PB. This discovery has potential applications in iPSC banking, disease modeling and regenerative medicine.
Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age.Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05). Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation). These microRNAs were unchanged in adult cardiac progenitors.The effect of exposure to simulated microgravity in cardiovascular progenitors is age-dependent. Adult cardiac progenitors showed elevated expression of markers for endothelial and cardiomyogenic differentiation whereas neonatal progenitors acquired characteristics of dedifferentiating cells.
Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.
A panel of murine monoclonal antibodies (MAbs) to the human immunodeficiency virus type 1 transactivator tat protein were characterized. The anti-tat MAbs were mapped to the different domains of the tat protein by Western blot (immunoblot) and Pepscan analyses. One-half of the MAbs tested mapped to the amino-terminal proline-rich region, and one-third of the MAbs tested mapped to the lysine-arginine-rich region of tat. The individual MAbs were tested for inhibition of tat-mediated trans activation, using a cell-based in vitro assay system. MAbs which mapped to the amino-terminal region of the tat protein demonstrated the highest degree of inhibition, whereas MAbs reactive to other portions of the molecule exhibited a less pronounced effect on tat function.
Background B cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-nonGal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen-xenoantibody interactions could prolong xenograft survival while preserving B cell-mediated immune surveillance. Methods The anti-idiotypic antibody, B4N190, was selected from a synthetic human phage display library after enrichment against a recombinant anti-nonGal xenoantibody followed by functional testing in vitro. The inhibitory small molecule, JMS022, was selected from the NCI diversity set III using virtual screening based on predicted xenoantibody structure. Three rhesus monkeys were pretreated with anti-nonGal specific single chain anti-idiotypic antibody, B4N190. A total of five monkeys, including two untreated controls, were then immunized with GTKO porcine endothelial cells to initiate an anti-non α-1,3-gal (nonGal) xenoantibody response. The efficacy of the inhibitory small molecule specific for anti-nonGal xenoantibody, JMS022, was tested in vitro. Results After the combination of in vivo anti-id and in vitro small molecule treatments, IgM xenoantibody binding to GTKO cells was reduced to pre-immunization levels in 2/3 animals, however, some xenoantibodies remained in the third animal. Furthermore, when treated with anti-id alone all three experimental animals displayed a lower anti-nonGal IgG xenoantibody response compared to controls. Treatment with anti-idiotypic antibody alone reduced IgM xenoantibody response intensity in only one of three monkeys injected with GTKO pig endothelial cells. In the one experimental animal which displayed reduced IgM and IgG responses select B cell subsets were also reduced by anti-id therapy alone. Furthermore, natural antibody responses, including anti-laminin, anti-ssDNA, and anti-throglobulin antibodies were intact despite targeted depletion of anti-nonGal xenoantibodies in vivo indicating that selective reduction of xenoantibodies can be accomplished without total B cell depletion. Conclusions This preliminary study demonstrates the strength of approaches designed to selectively inhibit anti-nonGal xenoantibody. Both anti-nonGal specific xenoantibody and small molecules can be used to selectively limit xenoantibody responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.