The release rates of FFB from TPGS/Tween 20 systems were faster than those from TPGS/Tween 80 systems at the same K(m) value. In both systems, the release rates of FFB increased with a decrease in the K(m) value. Furthermore, both the release rates and the amounts of FFB from MDS in the water medium decreased with an increasing percentage of S(mix) added to both water contents. However, the release rates and amounts of FFB from MDSs increased with an increasing percentage of S(mix) in a 0.025 M sodium lauryl sulfate (SLS) solution. It was further illustrated that the release of FFB from SMEDDSs was complete within 30 min in both the 0.025 M SLS solution and water medium, but the release of FFB from Tricor® or MDSs was limited in water medium. An optimised FFB SMEDDS with either Tween 20(E5(20)) or Tween 80(E5(80)) and one MDS were selected for a pharmacokinetic study to compare with Tricor(®). The results demonstrated that the area under the receiver operating curve and C(max) values were in the order of Tricor(®) > E5(80)≅E5(20) > MDS and Tricor(®)≅E5(80) > E5(20) > MDS, respectively. Conclusions The absorption of drug carried by SMEDDS might not be enhanced as a result of the smaller volume of water taken with oral administration of SMEDDSs and the agitation rate of the gastrointestinal tract not being strong enough to efficiently promote the self-microemulsification process to facilitate the in-vivo dissolution rate.
The influence of physical characteristics of electrospun three-dimensional (3D) fibrous scaffolds based on polybutylene succinate-co-adipate (PBSA) and poly l-lactic acid (PLLA) on the culture of primary human chondrocytes (PHCs) in terms of cell attachment, proliferation, and re-differentiation was investigated. Physical characteristics assessed for two polymers electrospun at two different delivery rates (PBSA-3, PBSA-16, PLLA-3, and PLLA-16) including average fiber diameter, average pore diameter, porosity, and contact angle. Results demonstrated that 3D fibrous scaffolds are better for PHCs' attachment than two-dimensional (2D) casting films made of the same polymeric materials. It was also found that 3D fibrous scaffolds are appropriate architecture for the proliferation of PHCs than 2D casting films and dependent upon the polymer used. Histological analysis revealed that a significant amount of PHC was found to be growing only within layers of PLLA fibrous scaffolds. The mitochondrial ribonucleic acid (mRNA) expression of both aggrecan and type II collagen by PHCs cultured in tissue culture polystyrene for 28 days decreased significantly. The mRNA expression of both aggrecan and type II collagen by PHCs cultured in PBSA scaffolds increased from 14 to 28 days, whereas only mRNA expression of aggrecan cultured in both PLLA scaffolds increased from 14 to 28 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.