The stability of antipseudomonal -lactams in concentrated solutions was examined in view of their potential administration by continuous infusion with external pumps (for intensive care patients) or with portable pumps carried under clothing (for cystic fibrosis patients). Aztreonam (100 g/liter), piperacillin (128 g/liter, with tazobactam), and azlocillin (128 g/liter) remained 90% stable for up to more than 24 h at 37°C (mezlocillin [128 g/liter] was stable at 25°C but not at 37°C). Ceftazidime (120 g/liter), cefpirome (32 g/liter), and cefepime (50 g/liter) remained 90% stable for up to 24, 23.7, and 20.5 h at 25°C but only for 8, 7.25, and 13 h at 37°C, respectively. The control of temperature therefore appears to be critical for all three cephalosporins that cannot be recommended for use in portable pumps carried under clothes for prolonged periods for reasons of stability. Cefpirome and cefepime solutions developed an important color change (from light yellow to dark red) upon exposure when stored at 30°C or higher. Degradation of ceftazidime was accompanied by the liberation of pyridine which, at 37°C, was in excess of what is allowed by the U.S. Pharmacopeia, i.e., 1.1 mg/liter, after 8 and 12 h for drug concentrations of 12 and 8.3%, respectively. Imipenem and meropenem are too unstable (10% degradation at 25°C after 3.5 and 5.15 h, respectively) to be recommended for use by continuous infusion. Faropenem, examined in comparison with imipenem and meropenem, proved as stable as aztreonam or piperacillin.-Lactams are one of the most typical antibiotic classes for which the pharmacodynamic data, collected in vitro, as well as in animal studies, clearly indicate a potential advantage of a continuous infusion over the more conventional, discrete mode of administration (see references 6, 22, 23, 38, and 41 for reviews). Accordingly, several clinical trials have been initiated over the last half-decade, most notably in difficult-to-treat situations such as suspected gram-negative infections in critically ill patients (3), severe infections in intensive care patients (8,16,21,24,37), septicemia (1), severe sepsis (20), and cystic fibrosis (29,40). Yet, as clearly pointed out by one of the first promoters of the continuous infusion of -lactams (6), this mode of administration, through programmable pumps or other similar devices, requires the drug to remain sufficiently stable in solution over the projected duration of the infusion. In a previous study (30), we examined the stability of ceftazidime in solution and found it to be critically dependent on the temperature within the 20 to 37°C range (68 to 99°F). This sets clear limitations on the potential use of ceftazidime by continuous infusion if administrations every 24 h are contemplated without periodic changes of the solutions. Chemical considerations suggest that the stability of the main -lactams currently registered for human medicine use may vary to a meaningful extent. Unfortunately, these variations, and their consequences as far as continuous infu...
Racemases catalyze the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/β fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes.
Previous studies have shown that (i) the insulin-induced activation of heart 6-phosphofructo-2-kinase (PFK-2) is wortmannin-sensitive, but is insensitive to rapamycin, suggesting the involvement of phosphatidylinositol 3-kinase; and (ii) protein kinase B (PKB) activates PFK-2 in vitro by phosphorylating Ser-466 and Ser-483. In this work, we have studied the effects of phosphorylation of these residues on PFK-2 activity by replacing each or both residues with glutamate. Mutation of Ser-466 increased the V max of PFK-2, whereas mutation of Ser-483 decreased citrate inhibition. Mutation of both residues was required to decrease the K m for fructose 6-phosphate. We also studied the insulin-induced activation of heart PFK-2 in transfection experiments performed in human embryonic kidney 293 cells. Insulin activated transfected PFK-2 by phosphorylating Ser-466 and Ser-483. Kinase-dead (KD) PKB and KD 3-phosphoinositide-dependent kinase-1 (PDK-1) cotransfectants acted as dominant negatives because both prevented the insulin-induced activation of PKB as well as the inactivation of glycogen-synthase kinase-3, an established substrate of PKB. However, the insulin-induced activation of PFK-2 was prevented only by KD PDK-1, but not by KD PKB. These results indicate that the insulin-induced activation of heart PFK-2 is mediated by a PDK-1-activated protein kinase other than PKB.
Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Conclusion: Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut. (HEPATOLOGY 2008;48:1184-1192 H yperammonemia (HA) is a well-known complication of acute and chronic liver diseases and plays a central role in the pathogenesis of hepatic encephalopathy (HE). [1][2][3][4][5] This neurological dysfunction results, at least in part, from an increase in plasma ammonia level and the severity of the symptoms correlates with blood ammonia level. 6-9 Animal models used in studying hyperammonemic disorders are multiple: fulminant hepatic failure, 10 chronic liver failure, 11 or urea cycle deficiency. 12 Ammonia is produced by many tissues but its major external source results from deaminase and urease activities of the gut flora. Although its absorption occurs through the intestinal epithelium, ammonia is carried by the portal vein into the liver where it is metabolized into urea. 13 Classical treatments of HE, except through liver transplantation and liver replacement therapies, consist in decreasing the ammonia production of urease-positive bacteria by antibiotics or decreasing the ammonia absorption into the gut by acidifying the colon content with nonabsorbable sugars such as lactulose. 4,[13][14][1...
Cefepime has been examined for stability, potential liberation of degradation products and compatibility with other drugs under conditions mimicking its potential use by continuous infusion in cystic fibrosis and intensive care patients (5-12% w/v solutions; temperatures from 20 to 37 degrees C; 1 h contact at 25 degrees C with other drugs frequently co-administered by intravenous route to these types of patients). Ceftazidime was used as a comparator based on a previous normative study with this antibiotic for the same indications. Based on a limit of max. 10% degradation, cefepime can be considered stable for a maximum of 24 h at 25 degrees C, but for only approximately 14 h at 30 degrees C, and for <10 h at 37 degrees C. Cefepime released so far unidentified degradation products if maintained at >30 degrees C for >12 h as shown from a marked increase in pH and from the development of a strong red-purple colour. Incompatibilities were observed with erythromycin, propofol, midazolam, phenytoin, piritramide, theophylline, nicardipine, N-acetylcysteine and a concentrated solution of dobutamine. We conclude that: (i) cefepime cannot be used safely by continuous infusion if containers are kept for more than a few hours at 37 degrees C (as will be the case for cystic fibrosis patients if using portable pumps carried under clothes); (ii) caution must be exercised in intensive care patients if the temperature and co-administration of other drugs is not kept under tight control. The nature and safety of the cefepime degradation products need to be studied further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.