The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles.
Active immunization is an emerging potential modality to combat fatal overdose amid the opioid epidemic. In this study, we described the design, synthesis, formulation, and animal testing of an efficacious vaccine against fentanyl. The vaccine formulation is composed of a novel fentanyl hapten conjugated to tetanus toxoid (TT) and adjuvanted with liposomes containing monophosphoryl lipid A adsorbed on aluminum hydroxide. The linker and hapten N -phenyl- N -(1-(4-(3-(tritylthio)propanamido)phenethyl)piperidin-4-yl)propionamide were conjugated sequentially to TT using amine- N -hydroxysuccinimide-ester and thiol–maleimide reaction chemistries, respectively. Conjugation was facile, efficient, and reproducible with a protein recovery of >98% and a hapten density of 30–35 per carrier protein molecule. In mice, immunization induced high and robust antibody endpoint titers in the order of >10 6 against the hapten. The antisera bound fentanyl, carfentanil, cyclopropyl fentanyl, para -fluorofentanyl, and furanyl fentanyl in vitro with antibody-drug dissociation constants in the range of 0.36–4.66 nM. No cross-reactivity to naloxone, naltrexone, methadone, or buprenorphine was observed. In vivo , immunization shifted the antinociceptive dose–response curve of fentanyl to higher doses. Collectively, these preclinical results showcased the desired traits of a potential vaccine against fentanyl and demonstrated the feasibility of immunization to combat fentanyl-induced effects.
Low‐efficacy mu‐opioid receptor (MOR) agonists represent promising therapeutics, but existing compounds (e.g., buprenorphine, nalbuphine) span a limited range of low MOR efficacies and have poor MOR selectivity. Accordingly, new and selective low‐efficacy MOR agonists are of interest. A novel set of chiral C9‐substituted phenylmorphans has been reported to display improved MOR selectivity and a range of high‐to‐low MOR efficacies under other conditions; however, a full opioid receptor binding profile for these drugs has not been described. Additionally, studies in mice will be useful for preclinical characterization of these novel compounds, but the pharmacology of these drugs in mice has also not been examined. Accordingly, the present study characterized the binding selectivity and in vitro efficacy of these compounds using assays of opioid receptor binding and ligand‐stimulated [35S]GTPɣS binding. Additionally, locomotor effects were evaluated as a first step for in vivo behavioral assessment in mice. The high‐efficacy MOR agonist and clinically effective antidepressant tianeptine was included as a comparator. In binding studies, all phenylmorphans showed improved MOR selectivity relative to existing lower‐efficacy MOR agonists. In the ligand‐stimulated [35S]GTPɣS binding assay, seven phenylmorphans had graded levels of sub‐buprenorphine MOR efficacy. In locomotor studies, the compounds again showed graded efficacy with a rapid onset and ≥1 h duration of effects, evidence for MOR mediation, and minor sex differences. Tianeptine functioned as a high‐efficacy MOR agonist. Overall, these in vitro and in vivo studies support the characterization of these compounds as MOR‐selective ligands with graded MOR efficacy and utility for further behavioral studies in mice.
The need for safer pain-management therapies with decreased abuse liability inspired a novel drug design that retains μ-opioid receptor (MOR)-mediated analgesia, while minimizing addictive liability. We recently demonstrated that targeting the dopamine D3 receptor (D3R) with highly selective antagonists/partial agonists can reduce opioid self-administration and reinstatement to drug seeking in rodent models without diminishing antinociceptive effects. The identification of the D3R as a target for the treatment of opioid use disorders prompted the idea of generating a class of ligands presenting bitopic or bivalent structures, allowing the dual-target binding of the MOR and D3R. Structure–activity relationship studies using computationally aided drug design and in vitro binding assays led to the identification of potent dual-target leads (23, 28, and 40), based on different structural templates and scaffolds, with moderate (sub-micromolar) to high (low nanomolar/sub-nanomolar) binding affinities. Bioluminescence resonance energy transfer-based functional studies revealed MOR agonist–D3R antagonist/partial agonist efficacies that suggest potential for maintaining analgesia with reduced opioid-abuse liability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.