The nuclear vitamin D receptor (VDR) binds 1,25-dihydroxyvitamin D 3 (1,25D), its high affinity renal endocrine ligand, to signal intestinal calcium and phosphate absorption plus bone remodeling, generating a mineralized skeleton free of rickets/osteomalacia with a reduced risk of osteoporotic fractures. 1,25D/VDR signaling regulates the expression of TRPV6, BGP, SPP1, LRP5, RANKL and OPG, while achieving feedback control of mineral ions to prevent age-related ectopic calcification by governing CYP24A1, PTH, FGF23, PHEX, and klotho transcription. Vitamin D also elicits numerous intracrine actions when circulating 25-hydroxyvitamin D 3 , the metabolite reflecting vitamin D status, is converted to 1,25D locally by extrarenal CYP27B1, and binds VDR to promote immunoregulation, antimicrobial defense, xenobiotic detoxification, antiinflammatory/anticancer actions and cardiovascular benefits. VDR also affects Wnt signaling through direct interaction with β-catenin, ligand-dependently blunting β-catenin mediated transcription in colon cancer cells to attenuate growth, while potentiating β-catenin signaling via VDR ligand-independent mechanisms in osteoblasts and keratinocytes to function osteogenically and as a pro-hair cycling receptor, respectively. Finally, VDR also drives the mammalian hair cycle in conjunction with the hairless corepressor by repressing SOSTDC1, S100A8/S100A9, and PTHrP. Hair provides a shield against UV-induced skin damage and cancer in terrestrial mammals, illuminating another function of VDR that facilitates healthful aging.
The nuclear vitamin D receptor (VDR) mediates the actions of 1,25-dihydroxyvitamin D 3 (1,25D) to regulate gene transcription. Recently, the secondary bile acid, lithocholate, was recognized as a novel VDR ligand. Using reporter gene and mammalian two-hybrid systems, immunoblotting, competitive ligand displacement, and quantitative real time PCR, we identified curcumin (CM), a turmeric-derived bioactive polyphenol, as a likely additional novel ligand for VDR. CM (10 −5 M) activated transcription of a luciferase plasmid containing the distal vitamin D responsive element from the human CYP3A4 gene at levels comparable to 1,25D (10 −8 M) in transfected human colon cancer cells (Caco-2). While CM also activated transcription via a retinoid X receptor (RXR) responsive element, activation of the glucocorticoid receptor (GR) by CM was negligible. Competition binding assays with radiolabeled 1,25D confirmed that CM binds directly to VDR. In mammalian two hybrid assays employing transfected Caco-2 cells, CM (10 −5 M) increased the ability of VDR to recruit its heterodimeric partner, RXR, and steroid receptor coactivator-1 (SRC-1). Real time PCR studies revealed that CM-bound VDR can activate VDR target genes CYP3A4, CYP24, p21, and TRPV6 in Caco-2 cells. Numerous studies have shown chemoprotection by CM against intestinal cancers via a variety of mechanisms. Small intestine and colon are important VDRexpressing tissues where 1,25D has known anticancer properties that may, in part, be elicited by activation of CYP-mediated xenobiotic detoxification and/or up-regulation of the tumor suppressor p21. Our results suggest the novel hypothesis that nutritionally-derived CM facilitates chemoprevention via direct binding to, and activation of, VDR.
Background and Objective: Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)-collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, meaning that they are only detectable with EEG. A method is required to identify patients at greatest risk of seizures and thereby in need of prolonged continuous EEG monitoring. 2HELPS2B is a simple point system developed to address this need. 2HELPS2B estimates seizure risk for hospitalized patients using five EEG findings and one clinical finding (pre-EEG seizure). The initial 2HELPS2B study did not specifically assess the ABI subpopulation. In this study, we aim to validate the 2HELPS2B score in ABI and determine its relative predictive accuracy compared to a broader set of clinical and electrographic factors. Methods:We queried the Critical Care EEG Monitoring Research Consortium database for ABI patients age ≥ 18 with > 6 h of continuous EEG monitoring; data were collected between February 2013 and November 2018. The primary outcome was electrographic seizure. Clinical factors considered were age, coma, encephalopathy, ABI subtype, and acute suspected or confirmed pre-EEG clinical seizure. Electrographic factors included 18 EEG findings. Predictive accuracy was assessed using a machine-learning paradigm with area under the receiver operator characteristic (ROC) curve as the primary outcome metric. Three models (clinical factors alone, EEG factors alone, EEG and clinical factors combined) were generated using elastic-net logistic regression. Models were compared to each other and to the 2HELPS2B model. All models were evaluated by calculating the area under the curve (AUC) of a ROC analysis and then compared using permutation testing of AUC with bootstrapping to generate confidence intervals.Results: A total of 1528 ABI patients were included. Total seizure incidence was 13.9%. Seizure incidence among ABI subtype varied: IPH 17.2%, SDH 19.1%, aSAH 7.6%, TBI 9.2%. Age ≥ 65 (p = 0.015) and pre-cEEG acute clinical seizure (p < 0.001) positively affected seizure incidence. Clinical factors AUC = 0.65 [95% CI 0.60-0.71], EEG factors AUC = 0.82 [95% CI 0.77-0.87], and EEG and clinical factors combined AUC = 0.84 [95% CI 0.80-0.88]. 2HELPS2B AUC = 0.81 [95% CI 0.76-0.85]. The 2HELPS2B AUC did not differ from EEG factors (p = 0.51), or EEG and clinical factors combined (p = 0.23), but was superior to clinical factors alone (p < 0.001).Conclusions: Accurate seizure risk forecasting in ABI requires the assessment of EEG markers of pathologic electrocerebral activity (e.g., sporadic epileptiform discharges and lateralized periodic discharges). The 2HELPS2B score is a reliable and simple method to quantify these EEG findings and their associated risk of seizure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.