for their comments and criticisms, as well as many people who offered helpful comments when I presented earlier versions of this paper at the University of South Florida and at Wichita State University. I am greatly indebted to three anonymous reviewers-especially one, whose efforts went well beyond the norm. This paper examines the relationship between simulation and experiment. Many discussions of simulation, and indeed the term "numerical experiments," invoke a strong metaphor of experimentation. On the other hand, many simulations begin as attempts to apply scientific theories. This has lead many to characterize simulation as lying between theory and experiment. The aim of the paper is to try to reconcile these two points of view-to understand what methodological and epistemological features simulation has in common with experimentation, while at the same time keeping a keen eye on simulation's ancestry as a form of scientific theorizing. In so doing, it seeks to apply some of the insights of recent work on the philosophy of experiment to an aspect of theorizing that is of growing philosophical interest: the construction of local models.
The Argument: In its reconstruction of scientific practice, philosophy of science has traditionally placed scientific theories in a central role, and has reduced the problem of mediating between theories and the world to formal considerations. Many applications of scientific theories, however, involve complex mathematical models whose constitutive equations are analytically unsolvable. The study of these applications often consists in developing representations of the underlying physics on a computer, and using the techniques of computer simulation in order to learn about the behavior of these systems. In many instances, these computer simulations are not simple numbercrunching techniques. They involve a complex chain of inferences that serve to transform theoretical structures into specific concrete knowledge of physical systems. In this paper I argue that this process of transformation has its own epistemology. I also argue that this kind of epistemology is unfamiliar to most philosophy of science, which has traditionally concerned itself with the justification of theories, not in their application. Finally, I urge that the nature of this epistemology suggests that the end results of some simulations do not bear a simple, straightforward relation to the theories from which they stem.
We present a Bayesian analysis of the epistemology of analogue experiments with particular reference to Hawking radiation. First, we prove that such experiments can be confirmatory in Bayesian terms based upon appeal to 'universality arguments'. Second, we provide a formal model for the scaling behaviour of the confirmation measure for multiple distinct realisations of the analogue system and isolate a generic saturation feature. Finally, we demonstrate that different potential analogue realisations could provide different levels of confirmation. Our results provide a basis both to formalise the epistemic value of analogue experiments that have been conducted and to advise scientists as to the respective epistemic value of future analogue experiments. * email: Dardashti@uni-wuppertal.de †
Over the last several years, there has been an explosion of interest and attention devoted to the problem of Uncertainty Quantification (UQ) in climate science—that is, to giving quantitative estimates of the degree of uncertainty associated with the predictions of global and regional climate models. The technical challenges associated with this project are formidable, and so the statistical community has understandably devoted itself primarily to overcoming them. But even as these technical challenges are being met, a number of persistent conceptual difficulties remain. So why is UQ so important in climate science? UQ, I would like to argue, is first and foremost a tool for communicating knowledge from experts to policy makers in a way that is meant to be free from the influence of social and ethical values. But the standard ways of using probabilities to separate ethical and social values from scientific practice cannot be applied in a great deal of climate modeling, because the roles of values in creating the models cannot be discerned after the fact—the models are too complex and the result of too much distributed epistemic labor. I argue, therefore, that typical approaches for handling ethical/social values in science do not work well here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.