In designing new biomaterials, it is of outstanding importance to consider how cells respond to specific chemical and topographical features on the material surface. The behavior of most cell types in vivo is strictly related to specific chemical and topographical cues that characterize the extra cellular environment. In particular, during their lives cells react to topographical patterns such as those of the extracellular matrix (ECM), of micro and/or nanometric dimensions. The production of micrometric and/or nanometric features on artificial materials usually involves expensive and time-consuming methods of manufacturing, such as electron beam and colloidal lithography. In this article, different "Teflon-like" structured surfaces were deposited from tetrafluoroethylene (C(2)F(4))-fed plasmas, for the study of cell adhesion and growth. The reaction of different cell lines to different topographical features was evaluated and compared with cell behavior on flat samples with the same chemical composition. Cell adhesion was calculated from area covered by cells at different time of culture. Beside this, cell proliferation was determined with the MTT test. Cell morphology and filopodia interaction with the nanofeatures were also estimated by optical and scanning electron microscopy. A dramatic difference both in adhesion and growth was found between cells seeded on flat and rough surfaces with the density and spreading of adhered cells varying as a function of the roughness of coatings.
We used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.