A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl)methane (bisphenol F, BPF) and bis(4-hydroxyphenyl)sulfone (bisphenol S, BPS), have increased recently, leading to their detection as contaminants in the aquatic environment. The three compounds tested 100% positive for estrus response in 1936 and concerns about their health risks have been increasing. Abundant data on degradation of bisphenols (BPs) has been published, but results for biodegradation of BPs in seawater are lacking. However, several research groups have focused on this topic recently. In this study, the biodegradation behaviors of three BPs, namely BPA, BPF and BPS, in seawater were investigated using TOC Handai (TOC, potential test) and river (sea) die-away (SDA, simulation test) methods, which are both a kind of river-die-away test. The main difference between the tests is that indigenous microcosms remain in the sampled raw seawater for the SDA experiments, but they are removed through filtration and dispersed into artificial seawater for the TOC experiments. The BPs, except for BPS, were degraded using both methods. The SDA method produced better biodegradation results than the TOC method in terms of degradation time (both lag and degradation periods). Biodegradation efficiencies were measured at 75-100% using OPEN ACCESS Int. J. Environ. Res. Public Health 2009, 61473 the SDA method and 13-63% using the TOC method. BPF showed better degradation efficiency than BPA, BPF was > 92% and BPA 83% depleted according to the SDA tests. BPS degradation was not observed. As a conclusion, the biodegradability of the three BPs in seawater could be ranked as BPF > BPA >> BPS. BPF is more biodegradable than BPA in seawater and BPS is more likely to accumulate in the aquatic environment. BPS poses a lower risk to human health and to the environment than BPA or BPF but it is not amenable to biodegradation and might be persistent and become an ecological burden. Thus other degradation methods need to be found for the removal of BPS in the environment.
There is a group of compounds structurally similar to bisphenol-A (BPA), namely bisphenols (BPs), and some of them are considered to be able to partially replace BPA. In order to assess their biodegradability in the aquatic environment, a variety of BPs; BPA, bis(4-hydroxyphenyl)methane (BPF), bis(4-hydroxyphenyl)ethane (BPE), 2,2-bis(4-hydroxy-phenyl)butane (BPB), 2,2-bis(4- hydroxy-3-methylphenyl)propane (BPP), bis(4-hydroxyphenyl)sulfone (BPS), thiodiphenol (TDP) and 4,4'-dihydroxybenzophenone (HBP); were subjected to biodegradation tests under both aerobic and anaerobic conditions. For the aerobic degradation test, a kind of river-die-away method using several river water samples was used, while pond sediments were used for the anaerobic degradation tests in sealed anoxic bottles. As a whole, the examined BPs could be ranked by their biodegradability under aerobic conditions; BPF, HBP > > BPA > BPP > BPE > BPB > TDP > > BPS. On the other hand, the tendency for the anaerobic biodegradability was; BPF > HBP > BPS, BPA, TDP > BPE > BPB. From the viewpoint of biodegradability, BPF seems to be more environmentally-friendly than BPA and, therefore, may be a candidate to replace BPA for reducing the environmental risks.
Three bacteria capable of utilizing bis(4-hydroxyphenyl)methane (bisphenol F [BPF]) as the sole carbon source were isolated from river water, and they all belonged to the family Sphingomonadaceae. One of the isolates, designated Sphingobium yanoikuyae strain FM-2, at an initial cell density of 0.01 (optical density at 600 nm) completely degraded 0.5 mM BPF within 9 h without any lag period under inductive conditions. Degradation assays of various bisphenols revealed that the BPF-metabolizing system of strain FM-2 was effective only on the limited range of bisphenols consisting of two phenolic rings joined together through a bridging carbon without any methyl substitution on the rings or on the bridging structure. A BPF biodegradation pathway was proposed on the basis of metabolite production patterns and identification of the metabolites. The initial step of BPF biodegradation involves hydroxylation of the bridging carbon to form bis(4-hydroxyphenyl)methanol, followed by oxidation to 4,4-dihydroxybenzophenone. The 4,4-dihydroxybenzophenone appears to be further oxidized by the Baeyer-Villiger reaction to 4-hydroxyphenyl 4-hydroxybenzoate, which is then cleaved by oxidation to form 4-hydroxybenzoate and 1,4-hydroquinone. Both of the resultant simple aromatic compounds are mineralized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.