A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl)methane (bisphenol F, BPF) and bis(4-hydroxyphenyl)sulfone (bisphenol S, BPS), have increased recently, leading to their detection as contaminants in the aquatic environment. The three compounds tested 100% positive for estrus response in 1936 and concerns about their health risks have been increasing. Abundant data on degradation of bisphenols (BPs) has been published, but results for biodegradation of BPs in seawater are lacking. However, several research groups have focused on this topic recently. In this study, the biodegradation behaviors of three BPs, namely BPA, BPF and BPS, in seawater were investigated using TOC Handai (TOC, potential test) and river (sea) die-away (SDA, simulation test) methods, which are both a kind of river-die-away test. The main difference between the tests is that indigenous microcosms remain in the sampled raw seawater for the SDA experiments, but they are removed through filtration and dispersed into artificial seawater for the TOC experiments. The BPs, except for BPS, were degraded using both methods. The SDA method produced better biodegradation results than the TOC method in terms of degradation time (both lag and degradation periods). Biodegradation efficiencies were measured at 75-100% using
OPEN ACCESS
Int. J. Environ. Res. Public Health 2009, 61473 the SDA method and 13-63% using the TOC method. BPF showed better degradation efficiency than BPA, BPF was > 92% and BPA 83% depleted according to the SDA tests. BPS degradation was not observed. As a conclusion, the biodegradability of the three BPs in seawater could be ranked as BPF > BPA >> BPS. BPF is more biodegradable than BPA in seawater and BPS is more likely to accumulate in the aquatic environment. BPS poses a lower risk to human health and to the environment than BPA or BPF but it is not amenable to biodegradation and might be persistent and become an ecological burden. Thus other degradation methods need to be found for the removal of BPS in the environment.
A model continuous flow bioreactor (volume 0.5 L) was constructed for removing toxic soluble selenium (selenate/selenite) of high concentrations using a selenate-reducing bacterium, Bacillus sp. SF-1, which transforms selenate into elemental selenium via selenite for anaerobic respiration. Model wastewater contained 41.8 mg-Se/L selenate and excess lactate as the carbon and energy source; the bioreactor was operated as an anoxic, completely mixed chemostat with cell retention time between 2.2-95.2 h. At short cell retention times selenate was removed by the bioreactor, but accumulation of selenite was observed. At long cell retention times soluble selenium, both selenate and selenite, was successfully reduced into nontoxic elemental selenium. A simple mathematical model is proposed to evaluate Se reduction ability of strain SF-1. First-order kinetic constants for selenate and selenite reduction were estimated to be 2.9 x 10(-11) L/cells/h and 5.5 x 10(-13) L/cells/h, respectively. The yield of the bacterial cells by selenate reduction was estimated to be 2.2 x 10(9) cells/mg-Se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.