Summary1. The study of plant-pollinator interactions in a network context is receiving increasing attention. This approach has helped to identify several emerging network patterns such as nestedness and modularity. However, most studies are based only on qualitative information, and some ecosystems, such as deserts and tropical forests, are underrepresented in these data sets. 2. We present an exhaustive analysis of the structure of a 4-year plant-pollinator network from the Monte desert in Argentina using qualitative and quantitative tools. We describe the structure of this network and evaluate sampling completeness using asymptotic species richness estimators. Our goal is to assess the extent to which the realized sampling effort allows for an accurate description of species interactions and to estimate the minimum number of additional censuses required to detect 90% of the interactions. We evaluated completeness of detection of the community-wide pollinator fauna, of the pollinator fauna associated with each plant species and of the plant-pollinator interactions. We also evaluated whether sampling completeness was influenced by plant characteristics, such as flower abundance, flower life span, number of interspecific links (degree) and selectiveness in the identity of their flower visitors, as well as sampling effort. 3. We found that this desert plant-pollinator network has a nested structure and that it exhibits modularity and high network-level generalization. 4. In spite of our high sampling effort, and although we sampled 80% of the pollinator fauna, we recorded only 55% of the interactions. Furthermore, although a 64% increase in sampling effort would suffice to detect 90% of the pollinator species, a fivefold increase in sampling effort would be necessary to detect 90% of the interactions. 5. Detection of interactions was incomplete for most plant species, particularly specialists with a long flowering season and high flower abundance, or generalists with short flowering span and scant flowers. Our results suggest that sampling of a network with the same effort for all plant species is inadequate to sample interactions. 6. Sampling the diversity of interactions is labour intensive, and most plant-pollinator networks published to date are likely to be undersampled. Our analysis allowed estimating the completeness of our sampling, the additional effort needed to detect most interactions and the plant traits that influence the detection of their interactions.
Abstract.Most rare species appear to be specialists in plant-pollinator networks. This observation could result either from real ecological processes or from sampling artifacts. Several methods have been proposed to overcome these artifacts, but they have the limitation of being based on visitation data, causing interactions involving rare visitor species to remain undersampled. We propose the analysis of food composition in bee trap nests to assess the reliability of network specialization estimates. We compared data from a plant-pollinator network in the Monte Desert of Villavicencio Nature Reserve, Argentina, sampled by visit observation, and data from trap nests sampled at the same time and location. Our study shows that trap nest sampling was good for estimating rare species degree. The rare species in the networks appear to be more specialized than they really are, and the bias in the estimation of the species degree increases with the rareness. The low species degree of these rare species in the visitation networks results from insufficient sampling of the rare interactions, which could have important consequences for network structure.
Abstract. Recent studies of plant-animal mutualistic networks have assumed that interaction frequency between mutualists predicts species impacts (population-level effects), and that field estimates of interaction strength (per-interaction effects) are unnecessary. Although existing evidence supports this assumption for the effect of animals on plants, no studies have evaluated it for the reciprocal effect of plants on animals. We evaluate this assumption using data on the reproductive effects of pollinators on plants and the reciprocal reproductive effects of plants on pollinators. The magnitude of species impacts of plants on pollinators, the reciprocal impacts of pollinators on plants, and their asymmetry were well predicted by interaction frequency. However, interaction strength was a key determinant of the sign of species impacts. These results underscore the importance of quantifying interaction strength in studies of mutualistic networks. We also show that the distributions of interaction strengths and species impacts are highly skewed, with few strong and many weak interactions. This skewed distribution matches the pattern observed in food webs, suggesting that the community-wide organization of species interactions is fundamentally similar between mutualistic and antagonistic interactions. Our results have profound ecological implications, given the key role of interaction strength for community stability.
Fire represents a frequent disturbance in many ecosystems, which can affect plant-pollinator assemblages and hence the services they provide. Furthermore, fire events could affect the architecture of plant-pollinator interaction networks, modifying the structure and function of communities. Some pollinators, such as wood-nesting bees, may be particularly affected by fire events due to damage to the nesting material and its long regeneration time. However, it remains unclear whether fire influences the structure of bee-plant interactions. Here, we used quantitative plant-wood-nesting bee interaction networks sampled across four different post-fire age categories (from freshly-burnt to unburnt sites) in an arid ecosystem to test whether the abundance of wood-nesting bees, the breadth of resource use and the plant-bee community structure change along a post-fire age gradient. We demonstrate that freshly-burnt sites present higher abundances of generalist than specialist wood-nesting bees and that this translates into lower network modularity than that of sites with greater post-fire ages. Bees do not seem to change their feeding behaviour across the post-fire age gradient despite changes in floral resource availability. Despite the effects of fire on plant-bee interaction network structure, these mutualistic networks seem to be able to recover a few years after the fire event. This result suggests that these interactions might be highly resilient to this type of disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.