Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-β-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, β-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-β-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-β-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.
Schistosomes express a family of integral membrane proteins, called tetraspanins (TSPs), in the outer surface membranes of the tegument. Two of these tetraspanins, Sm-TSP-1 and Sm-TSP-2, confer protection as vaccines in mice, and individuals who are naturally resistant to S. mansoni infection mount a strong IgG response to Sm-TSP-2. To determine their functions in the tegument of S. mansoni we used RNA interference to silence expression of Sm-tsp-1 and Sm-tsp-2 mRNAs. Soaking of parasites in Sm-tsp dsRNAs resulted in 61% (p = 0.009) and 74% (p = 0.009) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in adult worms, and 67%–75% (p = 0.011) and 69%–89% (p = 0.004) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in schistosomula compared to worms treated with irrelevant control (luciferase) dsRNA. Ultrastructural morphology of adult worms treated in vitro with Sm-tsp-2 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls. Schistosomula exposed in vitro to Sm-tsp-2 dsRNA had a significantly thinner and more vacuolated tegument, and morphology consistent with a failure of tegumentary invaginations to close. Injection of mice with schistosomula that had been electroporated with Sm-tsp-1 and Sm-tsp-2 dsRNAs resulted in 61% (p = 0.005) and 83% (p = 0.002) reductions in the numbers of parasites recovered from the mesenteries four weeks later when compared to dsRNA-treated controls. These results imply that tetraspanins play important structural roles impacting tegument development, maturation or stability.
BackgroundThe human liver fluke, Opisthorchis viverrini, is designated as a group 1 carcinogen, and is the major risk factor for cholangiocarcinoma in endemic countries throughout Southeast Asia. Proteins in the excretory-secretory products and tegumental surface membranes of the fluke have been proposed to play pivotal roles in parasite survival in the host, and subsequent pathogenesis. These macromolecules are therefore valid targets for the development of vaccines and new drugs to control the infection. Tetraspanins (TSP) are prominent components of the tegument of blood flukes where they are essential for tegument formation, are directly exposed to the immune system, and are major targets for a schistosomiasis vaccine. We propose that similar molecules in the surface membranes of O. viverrini are integral to tegument biogenesis and will be efficacious vaccine antigens.Methodology/Principal FindingsThe cDNA sequence encoding O. viverrini tetraspanin-1 (Ov-TSP-1) was identified and cloned. The Ov-tsp-1gene was isolated from a cDNA library. Ov-tsp-1 mRNA was expressed most highly in metacercariae and eggs, and to a lesser extent in juvenile and adult worms. Immunolocalization with adult flukes confirmed that Ov-TSP-1 was expressed in the tegument and eggs in utero. Western blot analysis of rOv-TSP-1 probed with sera from O. viverrini-infected humans and hamsters indicated that both hosts raise antibody responses against the native TSP. Using RNA interference we silenced the expression level of Ov-tsp-1 mRNA in adult flukes by up to 72% by 10 days after delivery of dsRNA. Ultrastructural morphology of adult worms treated with Ov-tsp-1 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls.Conclusions/SignificanceThis is the first report of a tetraspanin from the tegument of a liver fluke. Our data imply that tetraspanins play important structural roles in the development of the tegument in the adult fluke. Potential uses of O. viverrini tetraspanins as novel interventions are discussed.
INTRODUCTIONSponges are one of the earliest branching metazoans. In addition to undergoing complex development and differentiation, they can regenerate via stem cells and can discern self from nonself ("allorecognition"), making them a useful comparative model for a range of metazoan-specific processes. Molecular analyses of these processes have the potential to reveal ancient homologies shared among all living animals and critical genomic innovations that underpin metazoan multicellularity. Amphimedon queenslandica (Porifera, Demospongiae, Haplosclerida, Niphatidae) is the first poriferan representative to have its genome sequenced, assembled, and annotated. Amphimedon exemplifies many sessile and sedentary marine invertebrates (e.g., corals, ascidians, bryozoans): They disperse during a planktonic larval phase, settle in the vicinity of conspecifics, ward off potential competitors (including incompatible genotypes), and ensure that brooded eggs are fertilized by conspecific sperm. Using genomic and expressed sequence tag (EST) resources from Amphimedon, functional genomic approaches can be applied to a wide range of ecological and population genetic processes, including fertilization, dispersal, and colonization dynamics, host-symbiont interactions, and secondary metabolite production. Unlike most other sponges, Amphimedon produce hundreds of asynchronously developing embryos and larvae year-round in distinct, easily accessible brood chambers. Embryogenesis gives rise to larvae with at least a dozen cell types that are segregated into three layers and patterned along the body axis. In this article, we describe some of the methods currently available for studying A. queenslandica, focusing on the analysis of embryos, larvae, and post-larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.